

JRC TECHNICAL REPORTS

Preparatory study of Ecodesign and Energy Labelling measures for High Pressure Cleaners

2nd draft report Tasks 1-4

Rodríguez-Quintero, R. (JRC) Paraskevas, D. (JRC) Viegand, J. (VM) Sweeney, K. (Intertek)

May 2019

This publication is a Technical report by the Joint Research Centre (JRC), the European Commission's science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication.

Table of Contents

In	troduction		2
1	Task 1: Scop	e, legislation and standardisation	3
	1.1 Product	scope	3
	1.1.1 Exi	isting definitions and categories	3
	1.1.1.1	PRODCOM categories	3
	1.1.1.2	Existing categories from standards, Ecodesign or Energy labelling.	4
	1.1.2 Fee	edback from stakeholders with regard to the initial scope and definit	ions.5
	1.1.3 Pre	eliminary product scope	6
	1.1.3.1	Description of products	6
	1.1.3.2	Proposed product scope	9
	1.2 Test star	ndards (EU, Member State and third country level)	12
	1.2.1 EN	or ISO/IEC test standards	12
	1.2.1.1 Standa	Mandates issued by the European Commission to the European rdisation Organisations (ESOs)	21
	1.2.1.2	Member States	
	1213	3 Third country test standards	22
	1.2.2 Co	mparative analysis for overlapping test standards on performance.	
	resources	use and emissions	27
	1.2.3 An	alysis of test standards on performance and resources use	27
	1.2.4 Tol	lerances, reproducibility and real-life simulation	28
	1.3 Legislati	on (EU, Member State and third country level)	29
	1.3.1 Eu	ropean Union	29
	1.3.2 Thi	ird countries	32
	1.3.2.1	USA	32
	1.3.2.2	2 Canada	33
	1.3.2.3	Australia and New Zealand	33
	1.4 Voluntar	y schemes	33
	1.5 Other st	udies	33
2	Task 2: Mark	ets	35
	2.1 Generic	economic data	35
	2.1.1 EU projecting	-28 Production of steam or sand blasting machines and similar jet- machines	35
	2.1.1.1	Volume of EU production	35
	2.1.1.2	2 Value of EU production	37
	2.1.2 EU projecting	exports and imports of steam or sand blasting machines and simila machines	ır jet- 40
	2.1.3 Ap	parent consumption of steam or sand blasting machines and similar machines	jet- 41

	2.1.4 and si	EU sales and intra/extra-EU-28 trade of steam or sand blasting machines milar jet-projecting machines	; 44
	2.1	.4.1 Extra-EU-28 trade	45
	2.2 Mark	et and stock data	46
	2.2.1	Domestic HPCs	46
	2.2	.1.1 Historical sales and projections	46
	2.2	.1.2 Lifetime calculations	47
	2.2	.1.3 In-use stocks at EU-28 level and WEEE generated*	49
	2.2	.1.4 Market penetration of domestic HPC at EU-28 level	51
	2.2.2	Professional HPCs	51
	2.2	.2.1 Historical sales, projections and market segmentation	51
	2.2	.2.2 Lifetime calculations	52
	2.2	.2.3 In-use stock and WEEE calculations	53
	2.3 Mark	et trends	54
	2.3.1	Input power (for domestic HPCs)	54
	2.3.2	Maximum water pressure	55
	2.3.3	Above 160 bar maximum pressure and cordless HPCs	56
	2.3.4	Price trends	56
	2.4 Cons	umer expenditure base data	56
	2.4.1	Average unit values of HPCs produced in the EU-28	57
	2.4.2	Consumer prices of consumables (detergent and water)	58
	2.4.3	Consumer prices of electricity/fuel	59
	2.4.4	Inflation and discount rates	60
	2.4.5	Installation costs	60
	2.4.6	Repair and maintenance costs	60
	2.4.7	Disposal tariffs/ taxes	62
	2.5 Reco	mmendations	62
	2.5.1	Refined product scope from the economic/commercial perspective	62
	2.5.2 perspe	Barriers and opportunities for Ecodesign from the economic/ commercial ective	62
3	Task 3: l	Jsers	64
	3.1 Intro	duction	64
	3.1.1	Scope of the task	64
	3.1.2	Data collection	64
	3.2 Syste	em aspects of use phase, for ErP with direct energy consumption effects	64
	3.2.1	Cleaning tasks and cleaning performance	65
	3.2.2	Frequency and time of use	66
	3.2.3	Use of hot water	67
	3.2	.3.1 Use of internally heated hot water	67

	3.2.3.2 Use of externally heated hot water	68
	3.2.3.3 Assumptions for use of hot water	68
	3.2.4 Use of detergents	68
	3.2.4.1 Aim and precautions	68
	3.2.4.2 Dispensing systems and size	69
	3.2.4.3 Types of detergents	69
	3.2.5 Use phase resource consumption	69
	3.2.5.1 Energy consumption	69
	3.2.5.2 Water consumption	72
	3.2.5.3 Detergent consumption	73
	3.3 System aspects of the use phase, for ErP with indirect energy consumption 74	effects
	3.3.1 Energy consumption effect of hot water externally heated	75
	3.3.2 Energy consumption effect of the water supply	76
	3.4 Total use phase resource impacts	76
	3.5 Cleaning performance test methods reflecting typical usages	77
	3.5.1 Opportunities for cleaning performance test methods	77
	3.5.2 Examples of test methods	78
	3.5.2.1 Intertek US	78
	3.5.2.2 Intertek UK	78
	3.5.2.3 Cleaning performance and durability laboratory tests for domestic 79	HPCs
	3.5.2.4 Which?	81
	3.6 End-of-life behaviour	81
	3.6.1 Product life influenced by user behaviour	81
	3.6.2 Collection rates by fraction	82
	3.6.3 Second-hand use and second product life	83
	3.6.4 Best practice in sustainable product use	84
	3.7 Local infrastructure	84
	3.7.1 Energy: Reliability, availability and nature	84
	3.7.1.1 Electricity	84
	3.7.1.2 Diesel, petrol and LPG	86
	3.7.2 Water	86
	3.7.3 Installation and installers	86
	3.7.4 Rentals and sharing arrangements	86
	3.8 Recommendations	87
	3.8.1 Refined product scope	87
	3.8.2 Barriers and opportunities for ecodesign and energy labelling	87
4	Task 4: Technologies	88

4.1 Introduction
4.1.1 Scope of the task
4.2 Technical product description88
4.2.1 Existing products88
4.2.1.1 Technical description of the HPC categories
4.2.1.2 Main components93
4.2.1.3 Analysis of main performance parameters
4.2.1.4 Analysis of ability to reduce power consumption with reduced force . 114
4.2.1.5 Analysis of weight of domestic products
4.2.1.6 Analysis of detergent use
4.2.1.7 Analysis of noise116
4.2.2 Products with standard improvement options, BAT and BNAT 118
4.2.2.1 Energy efficiency in pumps and motors
4.2.2.2 Energy efficiency in water heating
4.2.2.3 Spraying technology122
4.2.2.4 Water and consumables efficiency122
4.2.2.5 Sensors and automatic controls
4.2.2.6 Resource efficiency123
4.3 Production, distribution and End-of-Life 124
4.3.1 Product weight and Bills-of-Materials (BOMs)124
4.3.2 Assessment of primary scrap production during sheet metal manufacturing 126
4.3.3 Packaging materials127
4.3.4 Volume and weight of the packaged product
4.3.5 Actual means of transport employed in shipment of components, subassemblies and finished products
4.3.6 Material flow and collection effort at end-of-life (secondary waste), to landfill/ incineration/ recycling/reuse (industry perspective)
4.3.7 Time-to-failure of critical parts
4.4 Recommendations 129
4.4.1 Refined product scope from the technical perspective
4.4.2 Barriers and opportunities for Ecodesign from a technical perspective 129
Annexes
Annex 1. Definitions of key parameters and of other parameters
Annex 2. Value of exports of steam or sand blasting machines and similar jet- projecting machines in euros – time series
Annex 3. Value of imports of steam or sand blasting machines and similar jet- projecting machines in euros- time series
Annex 4. Inflation rates

List of Figures

Figure 1. MEErP structure
Figure 2. HPC product scope 10
Figure 3. Maximum water pressure vs connection power of various HPC models12
Figure 4. Estimated historical sales of domestic HPCs for the EU-28 for 2007-2017 along with forward and backward projections covering the period 1997-205047
Figure 5 . a) The domestic HPC Weibull lifetime distribution with information on the annual % of retiring products and the cumulative % of survivals and b) % of retiring products for a period of 50 years divided into 5-year periods
Figure 6. Estimated `survival' and `new sales' in-use stocks of domestic HPC units at EU- 28 level
Figure 7. Estimated WEEE fraction generated by domestic HPCs at EU-28 level50
Table 8. Estimated market penetration (%) at EU-28 level
Figure 9. Market segmentation for professional HPCs for 2017
Figure 10 . EU-28 estimated sales for cold and hot water professional HPCs for 2011-2017 along with forward and backward projections covering the period 1997-205052
Figure 11. The professional HPC Weibull lifetime distribution with information on the annual % of retiring products and the cumulative % of survivals and b) % of retiring products for a period of 50 years divided into 5-year periods
Figure 12. Estimated 'survival' and 'new sales' in-use stocks of cold water professional HPCs at EU-28 level
Figure 13. Estimated 'survival' and 'new sales' in-use stocks of hot water professional HPCs at EU-28 level
Figure 14. Market share (%) of input power categories for domestic HPCs for the years 2007-201755
Figure 15 . Market share (%) of input power categories for domestic HPCs for the years 2007-2017
Figure 16. Unit sales of hot and cold water HPCs capable of a maximum water pressure above 160 bar and unit sales of cordless HPCs with low water pressure for the period 2008-2017
Figure 17. Average price per unit: historical evolution and forecasts per HPC subcategory
Figure 18. Cycle of the basic factors for cleaning (provided by the manufacturer Nilfisk)
Figure 19. Water and energy consumption for cleaning 1 m ² of pavement with a standard nozzle
Figure 20. Water and energy consumption for cleaning 1 m ² of pavement with a rotating nozzle
Figure 21. Durability tests of domestic HPCs for 300 cycles80
Figure 22. Net electricity generation, EU-28 in 2015 (% of total, based on GWh)85
Figure 23. Main components of a high pressure cleaner
Figure 24. Example of a series connected pressure switch

Figure 25. (a) Electric motor/pump as an integral unit, and (b) another view with the motor case, switch, start capacitor, etc. removed96
Figure 26. Details of a typical air-cooled electric motor96
Figure 27. Typical shaft-driven arrangement96
Figure 28. Water pump with a manifold assembly that houses the chemical injector, a pressure check valve (unloader valve) and the inlet and outlet tubes
Figure 29. The Wobble-type pump99
Figure 30. The axial-type pump99
Figure 31: Typical Triplex pump100
Figure 32. Hot water HPCs with diesel burner (left) and with electric boiler (right)101
Figure 33. Typical heating coil (left) and burner assembly (right) for a hot water HPC101
Figure 34. Power load vs. maximum water flow (I/hour) for professional HPCs (excluding stationary HPCs and deducting power for electrically heated hot water HPCs) based on the technical specifications
Figure 35. Input power versus CPI (maximum water flow x maximum water pressure) for domestic and professional HPCs based on the technical specifications
Figure 36. EEI (Energy Efficiency Index) vs. power load for professional HPCs (excluding stationary HPCs and deducting power for electric heated hot water HPCs) based on the technical specifications
Figure 37. Energy and water consumption of 22 HPCs, expressed as % deviation from the average
Figure 38. Energy and water consumption and rated input power of 22 HPCs, expressed as % deviation from the average
Figure 39. Energy, water consumption and rated pump pressure of 22 HPCs, expressed as % deviation from the average
Figure 40. Energy, water consumption and rated maximum flow of 22 HPCs, expressed as % deviation from the average
Figure 41. Energy and water consumption of 22 HPCs, expressed as % deviation from the average, and power range as variation of power at minimum spray111
Figure 42. Water consumption versus EEI nominal and measured112
Figure 43. Energy consumption versus EEI nominal and measured112
Figure 44: Cleaning time versus EEI nominal and measured113
Figure 45. Energy versus water consumption normalised for standard nozzles and rotating nozzles
Figure 46. Rated power and power draw at minimum and maximum spray force and with a rotating nozzle for a test sample of 43 domestic HPCs
Figure 47. Weight distribution of the sample included in the analysis115
Figure 48. Detergent use vs. maximum flow rate116
Figure 49. Sound power and pressure for each of the 7 categories117
Figure 50. An example of a Triplex pump (LW Series Triplex Pump – Comet Industrial Pumps, Italy)
Figure 51. Two examples of pressure control

List of Tables

Table 1. Product subcategories used in the PRODCOM database
Table 2. Typical high pressure cleaners 7
Table 3. Overview of relevant EN and ISO standards
Table 4. Overview of relevant IEC standards 19
Table 5. Overview of relevant third country test standards
Table 6 . Volume (number of units) of steam or sand blasting machines and similar jet-projecting machines produced in the EU-28 between 2009 and 2016 (Eurostat)
Table 7. Value (in EUR) of steam or sand blasting machines and similar jet-projectingmachines in the EU-28 between 2009 and 2016 (Eurostat)
Table 8. Value of exports and imports of steam or sand blasting machines and similarjet-projecting machines in 2016 (Eurostat)
Table 9. Calculation of apparent consumption (in EUR) of steam or sand blastingmachines and similar jet-projecting machines between 2009 and 2016 (own calculationsbased on Eurostat)
Table 10. Intra- and extra-EU-28 trade of Member States with steam or sand blastingmachines and similar jet-projecting machines in 2016 (Eurostat)
Table 11: Value (in EUR) of extra-EU-28 trade with some countries in 2016 (Eurostat) 45
Table 12. Retail prices of detergents (incl. VAT) in Spain in 2018
Table 13. Annual prices of energy products 59
Table 14. Retail prices of spare parts of domestic high pressure cleaners in Spain in2018
Table 15. Prices of spare parts of professional high pressure cleaners in Spain in 2018 61
Table 16. Average total labour costs for repair services 62
Table 17: Stakeholder information on usage patterns 66
Table 18. Assumptions of annual hours of active use and of cars washed per year67
Table 19. Assumed proportion of hot water (%) used for main HPC categories68
Table 20. Minimum, average and maximum detergent dosage69
Table 21. Calculated use phase annual energy consumption of the 'Low usage scenario',for the range of annual usage and average model in each category with electric motor .70
Table 22. Calculated use phase annual energy consumption of the 'low usage scenario',for the range of annual usage and average model in each category with a combustionmotor
Table 23. Calculated use phase annual water consumption of the `low usage scenario',for the range of annual usage and average model in each category
Table 24. Calculated use phase annual detergent consumption for the range of annualusage and average model in each category
Table 25. Calculated use phase annual energy consumption for externally heated hotwater for the range of annual usage and average model in each relevant category75
Table 26. Total use phase annual electricity, fuel, water and detergent consumption forthe range of annual usage and average model in each category summarising the figuresin previous tables

Table 27. Definitions of lifetime82
Table 28: Calculated collection rate of 'Electrical and electronic tools' in EU,2016. Data for Italy, Cyprus, Malta and Romania were not available for 2016;instead data for 2015 or 2014 were used.82
Table 29. Top spots of the global Energy Architecture Performance Index report
Table 30. Typical main parameters for domestic cold water electricity-driven HPCs89
Table 31. Parameters for domestic hot water electricity-driven HPCs 89
Table 32. Typical main parameters for professional cold water electricity-drivensingle/three-phase HPCs90
Table 33. Typical main parameters for professional cold water combustion-engine-drivenHPCs
Table 34. Typical main parameters for professional hot water single/three-phase HPCswith fuel heater
Table 35. Typical main parameters for professional hot water three-phase HPCs with electric heater
Table 36. Typical main parameters for professional hot water combustion-engine-drivenHPCs with fuel heater
Table 37. Typical main parameters for stationary cold water HPCs
Table 38. Typical main parameters for stationary hot water HPCs with fuel heater93
Table 39. List of components and materials for typical domestic and professional HPCs
Table 40. Estimated material composition for each typical high-pressure cleaner in Eco-Modelling Framework Tool format126
Table 41. End-of-life scenarios according to Caspersen and Sørensen ⁷⁸
Table 42. Default end-of-life routes for relevant material groups in EcoReport tool (version 3.06)

Table of Acronyms

MEErP	Methodology for Ecodesign of Energy- related Products
NACE	Nomenclature used in the European Union
НРС	High pressure cleaner
IECEE CB	International Electrotechnical Commission Electrical Engineering Certification Body
EN	European Norm
ISO	International Standardization for Organisation
IEC	International Electrotechnical Commission
EMC	Electromagnetic compatibility standards
ANSI	American National Standards Institute
СРС	Cleaning Performance Program
LCA	Life Cycle Assessment
LCC	Life Cycle Cost

Introduction

Background

The European Commission has launched a preparatory study of Ecodesign and Energy Labelling measures for High Pressure Cleaners (HPC).

The current report covers Task 1 of the Methodology for Ecodesign of Energy-related Products (MEErP)¹ used for this preparatory study. The methodology consists of seven well-defined tasks; Tasks 1 to 4 are focused on data retrieval and initial analysis, and Tasks 5 to 7 concentrate on modelling and modelling analyses aiming at providing sufficient background information to decide whether and which potential Ecodesign and Energy Labelling requirements should be set for the product group. Figure 1 presents an overview of all MEErP tasks to be followed in the HPC preparatory study.

Figure 1. MEErP structure

The research is based on available scientific information and data provided by stakeholders and experts, following a life-cycle thinking approach and engaging stakeholder experts in order to discuss key issues and to develop a wide consensus.

Stakeholder consultation throughout the study

During the preparatory study, stakeholders are continuously consulted. An online communication system - BATIS - has been set up for easy exchange of documents between the registered stakeholders forming the Technical Working Group (TWG).

Questionnaires for gathering information on scope, definitions, and issues of relevance, as well as templates for the collection of relevant data, e.g. regarding energy and water consumption values, the definition of base cases and design options, and the discussion on policy options will be distributed to the TWG during the study process. Furthermore, the project team will visit different manufacturers, test laboratories, recyclers and relevant trade fairs to investigate the overall product group, and product subgroups in detail, and to be completely up-to-date with the latest technical and market developments. At a stakeholder kick-off meeting held in Brussels on 3 May 2018, a first draft of the Task 1 report was presented and discussed.

¹ "Methodology for Ecodesign of Energy-related Products. MEErP 2011. Methodology Report. Part 1: Methods". Prepared for the European Commission, DG Enterprise and Industry by COWI and VHK (2011) and Materialefficiency Ecodesign Report and Module to the Methodology for the Ecodesign of Energy-related Products (MEErP) (2013).

1 Task 1: Scope, legislation and standardisation

Task 1 comprises the identification of the scope (categories, subcategories, etc.), definitions, system boundaries, test standards and existing regulation, both within the EU and internationally. Its results consist of the definition of a preliminary scope, with a special focus on the products' performance, in combination with the energy and resource efficiency of HPCs during their use phase. Other life-cycle and product aspects such as production, maintenance, durability, reparability, recyclability and product End-of-Life (EoL) treatment are also considered.

1.1 Product scope

The following subsections provide an analysis of existing definitions of HPCs, as used for example in European statistics, EU legislation, and standards. The product scope is also based on the preliminary stakeholder feedback regarding the initially proposed scope and definitions. Based on this information and further research and evidence, a preliminary product scope is presented as the basis for discussion at the first stakeholder meeting.

1.1.1 Existing definitions and categories

This section describes existing definitions, categories and subcategories based, inter alia, on Eurostat PRODCOM categories, standards and labelling categories.

1.1.1.1 PRODCOM categories

The PRODCOM database is the official source of information on the production and sales of products in the EU according to the MEErP methodology.

Since 2008 the PRODCOM database nomenclature has been NACE Rev. 2.0², which means that the data registered for HPCs falls under the category "28.29.22.30 – Steam or sand blasting machines and similar jet-projecting machines (excluding fire extinguishers, spray guns and similar appliances)". However, this category also includes products other than HPCs for various purposes, including specialised industrial applications. As such, the category is considered as not totally representative of the HPC market.

Table 1 lists the nomenclature headings corresponding to the products relevant for this study. However, the PRODCOM database does not have quantified data per subcategory, which means that the data cannot be disaggregated. Thus, additional market data and estimations are needed.

PRODCOM nomen- clature	Description
84.24.30.01	Water cleaning appliances with built-in motor, with heating device
84.24.30.05	Water cleaning appliances with built-in motor, without heating device, of an engine power \leq 7.5 kW
84.24.30.09	Water cleaning appliances with built-in motor, without heating device, of an engine power $>= 7.5$ kW
84.24.30.10	Steam or sand blasting machines and similar jet projecting machines, compressed air operated

Table 1. Produ	uct subcategorie	es used in the	PRODCOM database

² <u>http://ec.europa.eu/eurostat/web/prodcom/data/database</u>

	Steam or sand blasting machines and similar jet projecting
84 34 30 00	machines (excl. compressed air operated and water cleaning
84.24.30.90	appliances with built-in motor and appliances for cleaning spe-
	cial containers)

1.1.1.2 Existing categories from standards, Ecodesign or Energy labelling

For defining the scope, there are two relevant European standards covering HPCs. These standards primarily focus on safety, and performance considerations are largely limited to noise evaluation. However, the terminology and parameters defined within the standards are still relevant for the work and have been used throughout this report.

The first standard covers high pressure cleaners with a rated pressure of no less than 2.5 MPa and not exceeding 35 MPa: EN 60335-2-79 "Household and similar electrical appliances - Safety - Part 2-79: Particular requirements for high pressure cleaners and steam cleaners" (2016). It does not define specific categories for HPCs; however, it covers HPCs without a traction drive, intended for household and commercial indoor or outdoor use, having a rated pressure of no less than 2.5 MPa and not exceeding 35 MPa. Hot water HPCs may incorporate a steam stage.

EN 60335-2-79 covers the following power systems of the drive for the pump in the HPCs:

- mains-powered motors up to a rated voltage of 250 V for single-phase machines and 480 V for other machines;
- battery-powered motors;
- internal combustion engines;
- hydraulic motors;
- pneumatic motors.

The above standard does not apply to:

- high pressure water jet machines having a rated pressure exceeding 35 MPa;
- steam cleaners intended for domestic use;
- handheld and transportable motor-operated electric tools;
- appliances for medical purposes;
- agricultural sprayers;
- non-liquid, solid abrasive cleaners;
- machines designed to be part of a production process;
- machines designed for use in corrosive or explosive environments (dust, vapour or gas); or
- machines designed for exclusive use in vehicles or on board ships or aircraft.

The second relevant European standard covers all HPCs with a water pressure above 35 MPa: EN 1829-1 High pressure water jet machines - Safety requirements - Part 1 (2010)

The standard contains safety-related requirements for high pressure water jet machines with drives of all kinds (e.g. electric motor, internal combustion engine, air and hydraulic) in which pumps are used to generate pressure. Standard EN 1829-1 deals with all significant hazards, hazardous situations and events arising during assembly, erection, operation and servicing relevant to high pressure water jet machines, when they are used as intended and under conditions of misuse which are reasonably foreseeable by

the manufacturer. The standard includes machines for one or more of the following industrial applications:

- cleaning;
- surface preparation;
- material removal;
- readjustment of concrete;
- cutting.

In standard EN 1829-1 there is no formal definition of a minimum cutting pressure (and therefore a maximum cleaning pressure), since this depends upon the material to be cut.

The HPC product category is not covered by current EU Ecodesign criteria, nor is it covered by current EU Energy Labelling criteria. However, it should be noted that electric motors used as components in high pressure cleaners are already subject to Ecodesign measures (see further detail in Section 1.3 dealing with legislation).

1.1.2 Feedback from stakeholders with regard to the initial scope and definitions

The project team distributed a questionnaire in January 2018. To date, eight stakeholders have submitted their feedback on "Task 1: Scope" via this questionnaire. These stakeholders comprise: two trade organisations for the sector, two consumer/environmental organisations and four manufacturers of HPC products.

From the responses received so far, most stakeholders agree that the scope of the Ecodesign / Energy Labelling preparatory study should be limited to the same scope and exclusions as defined in standard EN 60335-2-79 "Household and similar electrical appliances - Safety - Part 2-79: Particular requirements for high pressure cleaners and steam cleaners", i.e. HPCs with a maximum pressure of 35 MPa.

However, one stakeholder pointed out that there is a segment of HPCs with operating pressures higher than 35 MPa (products specially designed for heavy-duty industrial and agricultural applications). Thus, it would be premature to exclude such products from the HPC product scope without an analysis. More specifically on that topic, one stakeholder suggested that the scope should only include units with a maximum water pressure of 15 MPa, whilst another respondent suggested a maximum pressure of 70 MPa. Regarding additional exclusions, with reference to EN 60335-2-79, one stakeholder proposed that HPC machines mounted on trucks or trailers should be excluded from the scope but without providing any reasoning for this exclusion. Another stakeholder proposed that handheld and transportable motor-operated electric tools (IEC 60745 series, IEC 61029 series, IEC 62841 series) be excluded.

Regarding the question of whether HPCs with internal combustion engines should be included or excluded from the scope, most respondents mentioned that this product type is a niche product, which is mostly used in the industrial or agricultural sectors. However, to have a complete picture, apart from the market share, other parameters should be taken into account, for example the energy and resource consumption, the environmental impact and use pattern of these HPCs. Two stakeholders are in favour of including HPCs with combustion engines in the scope. One respondent estimated that the market share of HPCs with internal combustion engines is relatively small without giving estimates. Meanwhile, two stakeholders state that the internal combustion engines' market share of the hot water commercial cleaners market is between 6% and 15%. Three stakeholders have no information on the market for HPCs with internal combustion engines.

Regarding the question of including battery-powered HPCs within the scope of the study, the responses received so far in general indicate that currently there are few battery-powered domestic HPCs on the EU market. Three respondents are of the opinion that

battery-powered HPCs are not a significant product subgroup, and that they do not expect this to change in the foreseeable future as current battery capacities can only support high pressure cleaners with a low maximum pressure or short performance time. Large batteries with sufficient capacity would make the HPCs so heavy that they would not be considered mobile due to their weight. On the other hand, three stakeholders responded that they do expect more battery-powered HPCs in the future. Although nowadays battery-powered HPCs have no significant market share, and there may be few or no models available due to the aforementioned technical limitations, it is expected that battery-powered HPCs may emerge in the near future due to the rapid technological improvements in lithium ion batteries and their constant price drop per kWh during recent years. Thus, the project team suggests that they should be included in the product scope.

All but one stakeholder say that stationary high pressure units should not be included in the scope. Most stakeholders claim that the category is in the industrial sector (they are either used in an industrial environment or in an environment with an explosive atmosphere or in car wash facilities) and their use is very different from domestic and commercial applications. Furthermore, they argue that it is a niche market with very low sales (first estimations from stakeholders place these unit sales at the level of a few thousands units per year; however, more detailed information will be provided in Task 2). In contrast, one stakeholder states that the inclusion of the stationary units would give a complete overview of the HPC product group.

Seven out of eight stakeholders agree that steam cleaners are a different product and should not be included in the scope. One of these stakeholders mentions that commercial steam cleaners and those parts of hot water high pressure cleaners incorporating a steam stage which have a capacity not exceeding 100 l, a rated pressure not exceeding 2.5 MPa and a capacity and rated pressure not exceeding 5 MPa fall under EN 60335-2-79 and could be seen to be within the scope. One stakeholder does not answer directly this question but notes that the machine needs to be evaluated in all its functionalities following the current International Technical Standard.

1.1.3 Preliminary product scope

Based also on the initial round of feedback from stakeholders, summarised in the above section, together with initial findings from the HPC project team, a preliminary description of the product scope is given in this section. This was the basis of discussion for the first Technical Working Group meeting held on the 3 May 2018 in Brussels, Belgium.

The proposed primary performance parameter or 'functional unit' (i.e. related to the cleaning function), the description of the main components, and the energy and resource consumption during the use phase of the product are presented in this chapter.

1.1.3.1 Description of products

The European market has many designs of HPCs that are available to both European consumers and commercial operators. An HPC has been defined by one EU Directive as a: machine with nozzles or other speed-increasing openings which allow water, also with admixtures, to emerge as a free jet. In general, high pressure jet machines consist of a drive, a pressure generator, hose lines, spraying devices, safety mechanisms, controls and measurement devices³.

An HPC has a motor that drives a water pump, which is provided with water from either a water tap, external water reservoirs (for HPCs with self-priming pumps) or, in rare cases, a built-in container. The water pump accelerates the water to high pressure and releases it through a hose. The hose can have various attachments that can be used for different

³ Definition from the Outdoor Noise Directive; see description of the Directive in Section 1.3.

cleaning purposes and applications. Some HPCs have a container for detergent which can be mixed into the water for optimising the cleaning.

The motor can be powered with electricity, fuel (diesel, petrol or gas) or hydraulic or pneumatic sources. There is also a very small volume of battery-powered units available on the EU market. Fuel-powered units are generally able to provide higher pressures. Units that deliver a water jet at pressures above 35 MPa are also available for commercial and industrial cleaning applications.

HPCs may work with hot or cold water. Hot water high pressure cleaners have an integrated burner or boiler, which enables them to convert cold water into hot. Warm or hot water can also be supplied to some HPCs directly from the water connection without the need for internal heating.

HPCs may be mobile or stationary. The Outdoor Noise Directive⁴ defines these as follows:

- Mobile high pressure water jet machines are mobile, readily transportable machines which are designed to be used at various sites, and for this purpose are generally fitted with their own undergear or are vehicle-mounted. All necessary supply lines are flexible and readily disconnectable.
- Stationary high pressure water jet machines are designed to be used at one site for a length of time but capable of being moved to another site with suitable equipment. Generally skid- or frame-mounted with supply line capable of being disconnected.

In general, products meant for domestic and light use are not fitted with any form of traction drive. In all cases, the discharge line is considered to be handheld. Table 2 presents six typical types of HPCs. However, in the following Tasks more detailed information regarding HPC categorisation is presented as Base Cases.

Table 2. Typical high pressure cleaners

Domestic Compact units, suitable for general cleaning duties including garden tasks and furniture. Typically electric. Very few units on the market HPC are battery-powered. today Only one manufacturer produces hot water units. Typical power range 1 200-1 600 W. Typical pressure up to 11 MPa. Example product: Karcher K2 Compact units, often upright, suitable for Professional general cleaning duties including garden tasks, HP, electric furniture, patio and paths and car washing (1-phase) duties. Typically electric. range maximum 3.3 kW. Power Typical maximum pressure up to 18 MPa and/or with maximum flow rate below 900 l/h.

Example product: Bosch AQT 37-13 Plus

⁴ Description of the Outdoor Noise Directive in Section 1.3.

More powerful units, often upright, suitable for Professional HPC, electric a broad range of demanding cleaning duties. (3-pase) Typically electric.

> Typical power range: 2-15 kW. Typical maximum water pressure above 18 MPa and/or with maximum flow rate above 900 l/h.

> Example product: Karcher HD 20/15-4 Cageplus

HPC Petrol or diesel combustion-engine-driven units. with combustion Units are typically mounted on larger wheels (but are still intended to be transported engine manually) with a frame similar to a manual lawnmower or in a trailer. Useful in remote applications where an electrical power source is not available.

> Used for cleaning purposes including large areas such as car parks or warehouse yards or large vehicle washing duties.

> Alternative sources of power may include biodiesel and gas.

> Power range: 5-15 hp; 3-15 kW. Pressure is typically 16 MPa and higher.

> Example product: SIP Tempest PPG680/210 207 Bar Petrol Pressure Washer

water Hot water HPCs exist in versions with electric (1-3 motors and with combustion engines. Typically, phase) the hot water is produced from fuels (diesel, heating oil) by a burner and heat exchanger for heating the pressurised water. It incorporates a fuel tank, fuel pump and ancillaries. Hot water HPCs with a combustion engine typically have separate fuel tanks for the burner and for the engine.

Hot HPC

> For special purposes like indoor use, electric water heating is used.

> Units are typically 10-15 MPa, deliver hot water up to 90 °C (in rare cases up to 150 °C for steam output) and with an input power of the pump at 2-15 kW and input power of heater below 150 kW.

> Example product: V-Tuf - Rapid VSC Hot Water 230V

Stationary cold or hot water HPC Typically, this type of unit is installed in a cabinet or bench- or rack- or wall-mounted. Units may be hot or cold. Applications may include vehicle cleaning. Water pressure may be 10-20 MPa or higher. Motor ratings are typically 2-8 kW and the units incorporate a fuel tank with a low level warning.

The mains supply may be 230 V single-phase supply for lower pressure units but above 15 MPa or 3.3 kW units will typically require a 400 V three-phase supply. Temperatures 0-100 °C.

Example product: Mac International -Plantmaster

1.1.3.2 Proposed product scope

The preliminary scope of this study covers:

- 1. Cold water domestic high pressure cleaners.
- 2. Hot water domestic high pressure cleaners.
- 3. Cold water professional high pressure cleaners.
- 4. Hot water professional high pressure cleaners.
- 5. Cold water stationary high pressure cleaners.
- 6. Hot water stationary high pressure cleaners.

The first, third and fourth subgroups above represent the three main categories which were preliminarily investigated in the Preparatory study to establish the Ecodesign Working Plan 2015-2017⁵. In addition, cold and hot water stationary high pressure cleaners are added as separate categories (excluding stationary HPC equipment installed as part of industrial/production processes). Figure 2 illustrates the proposed product scope which is further explained in the following sections.

⁵ http://ec.europa.eu/DocsRoom/documents/20374

Figure 2. HPC product scope

Preliminary scope proposed

Based on the standard EN 60335-2-79 "Household and similar electrical appliances - Safety - Part 2-79: Particular requirements for high pressure cleaners and steam cleaners", i.e. HPCs with a maximum pressure of 35 MPa, the scope proposed covers high pressure cleaners without traction drive, intended for indoor or outdoor use, having a rated maximum water pressure of no less than 2.5 MPa and not exceeding 35 MPa. The high pressure cleaner may be fitted with a water heater (boiler or burner) for hot water production and can be mobile or stationary. Hot water high pressure cleaners may incorporate a steam stage.

The following power systems of the drive for the high pressure pump are covered:

- mains-powered motors up to a rated voltage of 250 V for single-phase machines and 480 V for other machines;
- battery-powered motors;
- battery- and electric-powered (hybrid);
- internal combustion engines;
- hydraulic or pneumatic motors.

According to standard EN 60335-2-79, the exclusions proposed are the following:

- high pressure water jet machines having a rated pressure exceeding 60 MPa;
- steam cleaners per se (i.e. steam cleaning technology only);
- appliances for medical purposes;

- agricultural sprayers;
- non-liquid, solid abrasive cleaners;
- machines designed to be part of a production process;
- machines designed for use in corrosive or explosive environments (dust, vapour or gas);
- machines designed for exclusive use in vehicles or on board ships or aircraft.

The definitions proposed are as follows:

- "High pressure cleaner" means a device that ejects water at high pressure (above 2.5 MPa and below 35 MPa) with the aim to remove dirt, dust, mould, etc. from a soiled surface or structure.
- "Hot water high pressure cleaner" means a high pressure cleaner that incorporates a water heater to raise the temperature of the input water.
- "Domestic high pressure cleaner" means a unit (cold or hot water) whose maximum power does not exceed 3.3 kW, single phase, and its intended use defined by the manufacturer is domestic.
- "Professional high pressure cleaner" means a unit (cold or hot water) whose power is equal to or above 2 kW, and its intended use defined by the manufacturer is professional or industrial. Units driven by internal combustion engines, single or three-phase electric and hydraulic or pneumatic motors are considered professional, and their intended use defined by the manufacturer is professional or industrial.
- "Stationary high pressure cleaner" means a unit that is designed to be used at one site for a length of time, not intended to be moved while operation, but capable of being moved to another site with suitable equipment. Generally, they are skid- or frame-mounted with the supply line capable of being disconnected.
- "Steam cleaner" means a unit that is designed for steam cleaning only.
- "Agricultural sprayer" means a unit that is used to apply liquid fertilisers, pesticides, or other liquids to crops during their growth cycle.

Further proposed definitions of key parameters related to high pressure cleaners are available in Annex 1.

Rationale for the proposed scope

Stationary HPCs: The study team would like to note that, although the sales of stationary units can be much lower compared with the rest of the HPC subcategories, their environmental impact is likely to be disproportionally higher compared to the other HPC categories, as their use can be more intense and frequent (e.g. stationary units for cars).

Maximum water pressure limits (2.5 MPa to 60 MPa): Below 2.5 MPa the product cannot be considered a HPC. This minimum pressure limit was selected to be in line with the EN 60335-2-79 safety standard. The maximum water pressure limit was set at 35 MPa, to align it with the standard EN 60335-2-79. According to manufacturers, the products that provide higher pressures represent a marginal share of the market and due to their different characteristics and usage, they significantly differ from the products below 35 MPa. .

Categorisation: Domestic (up to 3.3 kW) and professional categories were based on a preliminary analysis of 77 HPC models (hot and cold water, mobile and stationary) available on the market, presented in Figure 3. The electric power required by the appliance is a key feature, since domestic electricity supply (single-phase) cannot deliver more than approximately 3.3 kW, and therefore products above this limit are meant to be used for professional applications, where three-phase connections are more common.

However, there is an overlap between domestic and professional appliances, as there are some HPCs below 3.3 kW that are intended for professional applications and therefore the power limit for professional HPCs is set at 2 kW. The manufacturers indicated that the intended application (domestic or professional) is crucial in the design and manufacture of the HPCs, since the usage patterns are very different, and the intended use has therefore been included in the definitions of domestic and professional HPCs. Professional products are used much more frequently than domestic ones, so they are more robust in order to ensure sufficient endurance. They are also designed to enable high reparability, which is not the case for domestic products. Therefore, any potential criteria on durability and repairability could be used to determine the boundary between domestic and professional products in the range of 2 and 3.3 kW.

Battery-driven HPCs: Generally, appliances with batteries are appreciated by consumers and widely found on the market. Battery-driven HPCs are already available on the market albeit in low numbers and for low-performance applications. Furthermore, battery technology has improved significantly over recent years (affected also by the fast development of electric cars) with new materials and technologies increasing their capacity and efficiency, and lowering their weight, which also results in a decreasing price trend.

Figure 3. Maximum water pressure vs connection power of various HPC models

1.2 Test standards (EU, Member State and third country level)

The following tables collect and give details of the existing standards which are fully or partly relevant for Ecodesign or Energy labelling.

1.2.1 EN or ISO/IEC test standards

Table 3 presents the relevant test standards. They are divided into EN standard series on safety, EN standard series on electromagnetic compatibility and EN ISO standard series on acoustics. The table specifies the directive or regulation the standards relate to and a brief description of the content and scope.

Standard	Title	Directive /Regulation	Content and scope		
EN STANDARD ON PERFORMANCE					
EN IEC 62885-5	Surface clean- ing appliances - Part 5: High pressure clean- ers and steam cleaners for household and commercial use - Methods for measuring per- formance		EN IEC 62885-5:2018 lists the char- acteristic performance parameters for high pressure cleaners and steam cleaners in accordance with IEC 60335-2-79.		
EN STANDA	RD SERIES ON S	AFETY			
EN 60335- 1:2012+A1 3:2017	Household and similar appli- ances – Safety: Part 1: General requirements	Harmonised under: Low Voltage Directive (2014/35/EU) Machinery Directive (2006/42/EC)	This European Standard deals with the safety of electrical appliances for household environment and commer- cial purposes, their rated voltage be- ing no more than 250 V for single- phase and 480 V for others. This standard covers the reasonably foreseeable hazards presented by appliances and machines that are en- countered by all persons. (The EN version is similar to the IEC version with Group Differences but excludes A1+A2 and adds amendment A13). Parameters and attributes covered: general, classification, marking and instructions, protection against access to live parts, power, heating, leakage current and electric strength, over- voltage, moisture resistance, endur- ance, abnormal operation, stability and mechanical hazards, mechanical strength, construction, external sup- ply cords, earthing, insulation, re- sistance to heat and fire, resistance to rusting, radiation, toxicity and similar hazards.		
EN 60335- 2-79:2012	Household and similar appli- ances – Safety: Part 2-79: Par- ticular require- ments for high pressure clean-	Harmonised under: Machinery Directive (2006/42/EC) *Note 1	Part 2 standards supplement or modi- fy the corresponding clauses in EN 60335-1, so as to convert that publi- cation into the European Standard: Safety requirements for high pressure cleaners and steam cleaners. When a particular subclause of Part 1		

Table 3. Overview of relevant EN and ISO standards

Standard	Title	Directive /Regulation	Content and scope		
	ers and steam		is not mentioned in this Part 2, that subclause applies as far as is reason- able. When this standard states "addition", "modification" or "replacement", the relevant text in Part 1 is to be adapted accordingly.		
			The scope covers the safety of high pressure cleaners without traction drive, intended for household and commercial indoor or outdoor use, having a rated pressure no less than 2.5 MPa and not exceeding 35 MPa.		
			Parameters and attributes covered:		
			Rated pressure (MPa)		
			• Flow rate (I/m)		
			Maximum flow rate (l/m)		
			Rated temperature		
			Sound pressure level (dBA)		
			 Protection class (electric shock) 		
			IP rating		
			 Maximum power (water heater/if fitted) – (kW) 		
			Cleaning agent, volume		
			Commercial use		
			Operator		
			The standards also include:		
			Acoustic emissions		
			Vibration		
			The standard IEC/EN 60335-2-79 requires that the product's vibration characteristic is documented and verified using the method defined in Annex DD of the standard.		
EN 1829- 1:2010	High pressure water jet ma- chines – Safety	Harmonised under:	This standard is complimentary to EN 60335-2-79 and addresses HPCs above 35 MPa.		
	requirements – Part 1: Ma- chines	Machinery Directive (2006/42/EC)	It contains safety-related require- ments for high pressure water jet ma- chines with drives of all kinds (e.g. electric motor, internal combustion engine, air and hydraulic) in which pumps are used to generate pressure. The standard deals with all significant		

Standard	Title	Directive /Regulation	Content and scope	
		,	hazards.	
EN 1829- 2:2008	High pressure water jet ma- chines —	Harmonised under:	As above but relates to significant hazards associated with the hoses and lines of machines covered by EN	
	Safety require- ments — Part 2: Hoses, hose lines and con- nectors	Machinery Directive (2006/42/EC)	1025 1.	
EN STANDA	RD SERIES ON E	LECTROMAGNE	TIC COMPATIBILITY	
EN 55014- 1:2017	Electromagnetic compatibility. Requirements for household appliances, electric tools and similar ap- paratus. Emis- sion	Harmonised under: EMC Directive: (2014/30/EU)	This is a product-family-specific standard that covers all aspects of EM emission from products such as HPCs.	
EN 55014- 2:2015	Electromagnetic compatibility. Requirements for household appliances, electric tools and similar apparatus. Immunity	Harmonised under: EMC Directive: (2014/30/EU)	This is a product-family-specific standard that covers all aspects of EM immunity of products such as HPCs.	
EN 61000- 3-2:2014	Electromagnetic compatibility (EMC). Limits. Limits for harmonic current emissions (equipment input current ≤ 16 A per phase)	Harmonised under: EMC Directive: (2014/30/EU)	This standard is listed separately in the Official Journal of the European Union (OJEU) and is mandatory for any product that is connected to the Public Low Voltage Supply.	
EN 61000- 3-3:2013	Electromagnetic compatibility (EMC). Limits. Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment	Harmonised under: EMC Directive: (2014/30/EU)	This standard is listed separately in the Official Journal of the European Union (OJEU) and is mandatory for any product that is connected to the Public Low Voltage Supply.	

Standard	Title	Directive /Regulation	Content and scope		
	with rated current ≤ 16 A per phase and not subject to conditional connection				
EN 61000- 3-11:2000	Electromagnetic compatibility (EMC) - Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for Equipment with rated current <= 75 A and subject to conditional connection	Harmonised under: EMC Directive: (2014/30/EU)	This standard is listed separately in the Official Journal of the European Union (OJEU) and is mandatory for any product that is connected to the Public Low Voltage Supply.		
EN 55012:200 7	Electromagnetic Compatibility (EMC). Vehicles, boats and internal combustion engines - Radio disturbance characteristics - Limits and methods of measurement for the protection of off-board receivers	Harmonised under: EMC Directive: (2014/30/EU)	This standard applies to the emission of electromagnetic energy which may cause interference to radio reception emitted, among others, from devices equipped with internal combustion engines.		
EN ISO STANDARD SERIES ON ACOUSTICS					
EN ISO 4871:2009	Acoustics – Declaration and verification of noise emission values of ma- chinery and equipment	_	This standard is referenced by EN 60335-2-79:2012 2017 as the means of declaring the noise emission Sound Pressure Level (SPL). Gives information on the declaration of noise emission values, describes acoustical information to be presented in technical documents and specifies a method for verifying the noise		

Standard	Title	Directive /Regulation	Content and scope	
			emission declaration.	
EN ISO 11203:200 9	Acoustics. Noise emitted by machinery and equipment. Determination of emission sound pressure levels at a workstation and at other speci- fied positions from the sound power level	-	This standard is called up by EN 60335-2-79:2012 as the method for determining airborne noise.	
EN ISO 3744:2010	Acoustics. De- termination of sound power levels and sound energy	Annex III to Outdoor Noise Directive	This standard is referenced by EN 60335-2-79:2012 as one of two methods for determining the Sound Pressure Level (SPL).	
	levels of noise sources using sound pressure. Engineering methods for an essentially free field over a re- flecting plane		ISO 3744:2010 specifies methods for determining the sound power level or sound energy level of a noise source from sound pressure levels measured on a surface enveloping the noise source (machinery or equipment) in an environment that approximates to an acoustic free field near one or more reflecting planes. The sound power level (or, in the case of noise bursts or transient noise emission, the sound energy level) produced by the noise source, in frequency bands or with frequency A-weighting applied, is calculated using those measurements.	
			The methods specified in ISO 3744:2010 are suitable for all types of noise (steady, non-steady, fluctuat- ing, isolated bursts of sound energy, etc.) defined in ISO 12001.	
			ISO 3744:2010 is applicable to all types and sizes of noise source (e.g. stationary or slowly moving plant, installation, machine, component or subassembly), provided the conditions for the measurements can be met.	
			The test environments that are appli- cable for measurements taken in ac- cordance with ISO 3744:2010 can be located indoors or outdoors, with one or more sound-reflecting planes pre- sent on or near where the noise source being tested is mounted.	

Standard	Title	Directive /Regulation	Content and scope
			ISO 3743-1:2010 may be used as an alternative to this standard.
ISO 3746:2010	Acoustics - De- termination of sound power levels of noise sources using sound pressure Survey method using an enveloping measurement surface over a reflecting plane	Annex III to Outdoor Noise Directive (refers to standard ver- sion from 1995)	ISO 3746:2010 specifies methods for determining the sound power level or sound energy level of a noise source from sound pressure levels measured on a surface enveloping a noise source (machinery or equipment) in a test environment for which require- ments are given. The sound power level (or, in the case of noise bursts or transient noise emission, the sound energy level) produced by the noise source with frequency A-weighting applied is calculated using those measurements.
			The methods specified in ISO 3746:2010 are suitable for all types of noise (steady, non-steady, fluctuat- ing, isolated bursts of sound energy, etc.) defined in ISO 12001.
			ISO 3746:2010 is applicable to all types and sizes of noise source (e.g. stationary or slowly moving plant, installation, machine, component or subassembly), provided the conditions for the measurements can be met.
			The test environments that are appli- cable for measurements taken in ac- cordance with ISO 3746:2010 can be located indoors or outdoors, with one or more sound-reflecting planes pre- sent on or near where the noise source being tested is mounted.
			Information is given on the uncertain- ty of the sound power levels and sound energy levels determined in accordance with ISO 3746:2010, for measurements made with frequency A-weighting applied. The uncertainty conforms to that of ISO 12001:1996, accuracy grade 3 (survey grade).
EN ISO 3743- 1:2010	Acoustics - De- termination of sound power levels and sound energy levels of noise sources using sound pressure Engineering	-	ISO 3743-1:2010 specifies methods for determining the sound power level or sound energy level of a noise source by comparing measured sound pressure levels emitted by this source (machinery or equipment) mounted in a hard-walled test room, the charac- teristics of which are specified, with those from a calibrated reference

Standard	Title	Directive /Regulation	Content and scope		
	methods for small movable sources in re- verberant fields Part 1: Com- parison method for a hard- walled test room		sound source. The sound power level (or, in the case of noise bursts or transient noise emission, the sound energy level) produced by the noise source, in frequency bands of width one octave, is calculated using those measurements. The sound power lev- el or sound energy level with frequen- cy A-weighting applied is calculated using the octave-band levels. The method specified in ISO 3743- 1:2010 is suitable for all types of noise (steady, non-steady, fluctuat- ing, isolated bursts of sound energy, etc.) defined in ISO 12001.		
			The noise source being tested may be a device, machine, component or subassembly. The maximum size of the source depends upon the size of the room used for the acoustical measurements.		

It should be noted that while the safety of HPCs is primarily addressed by the Household Appliance (and similar equipment) series of standards, an HPC is considered a tool or machine and therefore this standard is harmonised under the EU Machinery Directive.

The EN standards referenced in this subsection are also available as IEC variants and are therefore recognised under the International Electrotechnical Commission Electrical Engineering Certification Body (IECEE CB) scheme. This is an international system for mutual acceptance of test reports and certificates dealing with the safety of electrical and electronic components, equipment and products based on IEC standards. IEC standards form the basis for testing and evaluation under the IECEE CB Certification scheme. An IECEE CB Test Certificate and Report may be used as a 'passport' for gaining the certification marks of National Certification bodies and may aid market entry in certain countries. Retail and other sales channels may also accept an IEC Test Report (up to 3 years old) as evidence of compliance. The IEC variants are collected and explained in Table 4.

Standard	Title	Content and scope
IEC 62885-5:2018	Surface cleaning appliances - Part 5: High pressure clean- ers and steam cleaners for household and commercial use - Methods for measuring per- formance	Same as EN IEC 62885-5.
IEC 60335-	Household and	The International IEC variant of the

1:2010+A1:2013+A2:201 6 (Ed. 5.2)	similar appliances – Safety: Part 1: General require- ments	EN standard. It should be noted that there are some detailed differences between the IEC and EN variants (the EN version has not adopted A1+A2
		but has amendment A14). The standard deals with the safety of electrical appliances for household environment and commercial purpos- es, their rated voltage being no more than 250 V for single-phase and 480 V for others. This standard covers the reasonably foreseeable hazards presented by appliances and machines that are en- countered by all persons. The following countries list National Differences against this standard: Austria, Canada, New Zealand, Den- mark, Sweden, UAE.
IEC 60335-2-79 Ed. 4.0:2016	Household and similar electrical appliances – Safety – Part 2- 79: Particular requirements for high pressure cleaners and steam cleaners *Note 2.	The International IEC variant of the EN standard.
IEC 61000-3-2:2014	Electromagnetic compatibility (EMC). Limits. Limits for har- monic current emissions (equipment input current ≤ 16 A per phase)	The International IEC variant of the EN standard.
IEC 61000-3-3:2013	Electromagnetic compatibility (EMC). Limits. Limitation of volt- age changes, voltage fluctua- tions and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional con- nection	The International IEC variant of the EN standard.

Standard	Title	Content and scope
	compatibility (EMC) - Limits - Limitation of volt- age changes, voltage fluctua- tions and flicker in public low-voltage supply systems - Equipment with rated current <= 75 A and sub- ject to conditional connection	EN standard.
CISPR 14-1:2016	Electromagnetic compatibility - Requirements for household appli- ances, electric tools and similar apparatus - Part 1: Emission	The international IEC variant of EN 55014-1.
CISPR 14-2:2015	Electromagnetic compatibility - Requirements for household appli- ances, electric tools and similar apparatus - Part 2: Immunity - Product family standard	The international IEC variant of EN 55014-2.
CISPR 12:2007	Vehicles, boats and internal com- bustion engines - Radio disturbance characteristics - Limits and meth- ods of measure- ment for the pro- tection of off- board receivers	The international IEC variant of EN 55012:2007.

$(^{1})$

1.2.1.1 Mandates issued by the European Commission to the European Standardisation Organisations (ESOs)

There are no specific standardisation mandates issued by the EC for this product category. General mandates that apply include the Commission's standardisation requests:

 M/556 COMMISSION IMPLEMENTING DECISION C(2017) 7926 of 1.12.2017 on a standardisation request to the European Committee for Standardisation and to the European Committee for Electrotechnical Standardisation as regards compliance with maximum content criteria of Polycyclic Aromatic Hydrocarbons in rubber and plastic components of articles placed on the market for supply to the general public in support of Regulation (EC) No. 1907/2006 of the European Parliament and of the Council (REACH).

- M/552 COMMISSION IMPLEMENTING DECISION C(2016) 7641 final of 30.11.2016 on a standardisation request to the European Committee for Standardisation, to the European Committee for Electrotechnical Standardisation and to the European Telecommunications Standards Institute as regards harmonised standards in support of Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.
- M/543 COMMISSION IMPLEMENTING DECISION C(2015)9096 of 17.12.2015 on a standardisation request to the European standardisation organisations as regards ecodesign requirements on material efficiency aspects for energy-related products in support of the implementation of Directive 2009/125/EC of the European Parliament and of the Council. Work carried out at the Joint Research Centre, Seville⁶, provides input to the standardisation under this mandate.

The following regulation covers all standardisation requests. The latest Union work programme for standardisation was published in August 2017.

- Regulation (EU) No 1025/2012 of the European Parliament and of the Council of 25 October 2012 on European standardisation, amending Council Directives 89/686/EEC and 93/15/EEC and Directives 94/9/EC, 94/25/EC, 95/16/EC, 97/23/EC, 98/34/EC, 2004/22/EC, 2007/23/EC, 2009/23/EC and 2009/105/EC of the European Parliament and of the Council and repealing Council Decision 87/95/EEC and Decision No 1673/2006/EC of the European Parliament and of the Council Text with EEA relevance.
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions The annual Union work programme for European standardisation for 2018 (COM/2017/0453 final) <u>http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2017:453:FIN.</u>

1.2.1.2 Member States

The Safety and Electromagnetic Compatibility (EMC) standards listed above are harmonised and are utilised as the basis for a Presumption of Conformity with the applicable directives by all Member States.

Annex ZB to EN 60335-1:2012+A13:2017 lists 'National Deviations'. Both the UK and Ireland list deviations related to statutory requirements for plugs fitted to this type of appliance.

1.2.1.3 Third country test standards

Table 5 presents third country test standards. Relevant standards have been found in the USA, Canada, Australia and New Zealand.

It should be noted that there are differences between IEC/EN standards and the North American standards. IEC and EN standards consider all reasonably foreseeable hazards but leave the means of achieving the essential requirements open to the creativity of the designer. IEC and EN standards define requirements and stimuli that must be applied to verify compliance. ANSI/UL (US) and CAN/CSA (Canada) standards, on the other hand, tend to be prescriptive in construction, methods and choice of wiring, components etc. The standards focus on construction and the performance sections cover how testing must be carried out to verify the construction. In this context 'performance' does not relate to the user experience of product performance or resources usage.

⁶ <u>http://susproc.jrc.ec.europa.eu/E4C/index.html</u>

Table 5. Overvie	w of relevant t	hird country	test standards
------------------	-----------------	--------------	----------------

Standard	Title	Content and scope
US STANDARDS		
ANSI/UL 60335-1 (2016)	Household and similar appli- ances – Safety: Part 1: Gen- eral requirements	This national standard is based on publication IEC 60335–1, Edition 5.1 (Edition 5:2010 including corrigendum 1:2010, corrigendum 2:2011, and amendment 1:2013) issued in April 2014.
ANSI/UL 60335-2-79 (2016)	Household and similar appli- ances – Safety: Part 2-79: Particular requirements for high pressure cleaners and steam	This national standard is based on publication IEC 60335-2-79.
ANSI/UL 1776 (2013)	Standard for Safety High pressure Cleaning Ma- chines	This standard covers electrically operated, high pressure cleaning machines in which the discharge line is hand- supported and manipu- lated, and that use water as the cleaning agent for household and commer- cial use. The products may use either hot or cold water, and they may be portable, sta- tionary or fixed.
		A product listed by a Nationally Recognised Test Laboratory (NRTL) is deemed to meet the requirements for ap- proval as defined in the National Electrical Code NFPA 70.
		Products which incorpo- rate heating must be further evaluated to the UL 499 standard.
		Parameters and attrib- utes covered:
		Construction (all prod- ucts), Electrical Systems and Devices (including assembly, cord connec- tions, access to live parts, insulation, etc.).

		Mechanical Systems and Devices (Fuel-Fired Products), Protection against injury, Perfor- mance – all products (includes normal opera- tion tests, temperature, abnormal tests, materi- als, etc.), Performance – Fuel-fired (similar topics and tests to above), Manufacturing and pro- duction tests, Instruc- tions and manuals. Use performance param- eters are not covered.
ANSI/UL499	Standard for Electric Heating Appliances	These requirements cov- er heating appliances rated at 600 V or less for use in unclassified loca- tions in accordance with the National Electrical Code (NEC), ANSI/NFPA 70.
FCC Part 15b (CFR 47)	Federal Communications Commission (FCC) require- ments for 'unintentional' ra- diators	A household appliance using digital logic (an unintentional device or system that generates and uses timing signals or pulses at a rate in excess of 9 000 pulses or cycles per second, and uses digital techniques as defined in Section 15.3 (k)) is classified under Part 15b as a Class B digital device (as defined in Section 15 101) requiring an equipment authorisation under the Verification procedure (Section 2 902). The FCC rule part 15b focuses on "unintention- al" radiation or noise generated by a digital device. This noise could potentially impact the operation of other devic- es in close proximity and therefore requires test- ing of the unintentional radiators.

CANADIAN STANDARDS			
CAN/CSA C22.2 NO. 60335- 1:16	Safety of household and similar appliances - Part 1: General requirements (Tri- national standard, with NMX- J-521/1-ANCE and UL 60335-1)	Comments as per AN- SI/UL 60335-1. There are national differ- ences against the IEC version of the standard.	
CAN/CSA E60335-2-79-09 (R2013) (Adopted IEC 60335-2- 79:2002+A1:2004+A2:2007, edition 2.2, 2007-09)	Household and similar elec- trical appliances - Safety - Part 2-79: Particular re- quirements for high pressure cleaners and steam cleaners (Adopted IEC 60335-2- 79:2002+A1:2004+A2:2007, edition 2.2, 2007-09)	Aligned with IEC stand- ard.	
CAN/CSA B140.11-M89 (R2014)	Oil/Gas-Fired Commer- cial/Industrial Pressure Washers and Steam Cleaners	Covers the performance, construction, testing, marking, installation, operation, and servicing of complete commercial and industrial pressure washers and steam cleaners that are either gas-fired or oil-fired. Hot water up to 100 °C.	
AUSTRALIAN and NEW ZEALAND STANDARDS			
AS/NZS 60335.1:2011	Household and similar elec- trical appliances - Safety General requirements (IEC 60335-1 Ed 5, MOD)	Australian/New Zealand version based on IEC Edition 5 but with modi- fications.	
		National differences ap- ply for New Zealand.	
AS/NZS 60335.2.79:2017	Household and similar elec- trical appliances - Safety Particular requirements for high pressure cleaners and steam cleaners	An adoption with nation- al modifications of the fourth edition of IEC 60335-2- 79, Household and simi- lar electrical appliances – Safety – Part 2-79: Par- ticular requirements for high pressure cleaners and steam cleaners.	

Furthermore, two American voluntary industry standards are identified:

Test standard CETA Performance Certified Standard

The Cleaning Equipment Trade Association (CETA) in the USA has developed a test standard, CPC 100 (CPC: Cleaning Performance Program), in collaboration with Intertek US to provide a uniform method for testing and rating pressure washers. The tests

calculate a maximum working pressure (MWP); the pressure at the pump cylinder head, and maximum working flow (MWF); the flow of water expressed as gallons per minute.

The definitions and scope are taken from American UL standard UL 1776 and the programme allows for third party verification and certification of the products' performance. Products must be listed to UL 1776 to be eligible.

The CETA CPC -100 does not prohibit manufacturers, retailers or users from advertising, marketing or using products if they have not conformed to the uniform testing method (it is not mandatory). The goal is to have a standard to evaluate pressure washer specifications used in advertising.

CETA Performance Certification is issued and controlled by a third party testing programme. The certification is issued by CETA based on test data provided by the third party laboratory. The authorisation to use 'CETA Performance Certified' is granted by CETA.

The programme and certification cover maximum pressure and maximum flow as the primary performance parameters but also verify additional specifications submitted by the manufacturer (e.g. horsepower, kW rating, rounds per minute or rpm etc.)

PW101 Standard for testing and rating performance of pressure washers

The Pressure Washers Association (PWMA) in the USA has published a performance standard PW101-2010: Standard for Testing and Rating Performance of Pressure Washers: Determination of Pressure and Water Flow. This standard is intended to provide a uniform method for testing and rating the performance of pressure washers with respect to maximum pressure and water flow rate, but not the in-use performance and efficiency of the cleaner. The PWMA also offers a voluntary certification programme which is managed by a third party (Intertek).

The standard applies to pressure washers intended for household, farm, consumer or commercial/industrial markets. Products are portable and may be powered by an engine or an electric motor.

The standard defines:

- test preparation requirements including initial running in of the machine for a set period (minimum 2h and maximum 5h);
- instrumentation and calibration requirements for pressure, flow, rpm (for engine driven) and voltage/current (for electric motors);
- conditions for the tests (e.g. operation at factory settings, or for user to set, at maximum settings);
- the positional requirements for pressure and flow instruments and measurement points;
- stability of supply voltage over measurement period;
- inlet water pressure range, water source temperature, ambient temperature range permitted;
- information required to be provided by the manufacturer;
- test reporting format;
- rounding methods for test data;
- rating and labelling requirements (based on average of at least three samples tested in accordance with the test method).

The test method includes:

- a test duration of 30 minutes of continuous operation;
- readings recorded at 5-minute intervals and average values calculated;
- average values used to assess performance and compliance with ratings;
- pressure and flow ratings no greater than the average of three samples divided by 0.9 (allows 10% tolerance)

1.2.2 Comparative analysis for overlapping test standards on performance, resources use and emissions

The standards described in Section 1.2 do not overlap on performance, resources use and/or emissions. All the standards listed in Section 1.2 are referenced in Annex CC of EN 60335-2-79. The two standards on acoustical methods (ISO 3743-1:2010 and ISO 3744-1:2010) are specified to allow manufacturers to choose a hard-walled room or free field environment to perform the tests. ISO 4871 describes how the Sound Pressure Level (SPL) should be declared.

1.2.3 Analysis of test standards on performance and resources use

There are currently no EN/IEC performance testing standards for HPCs.

As stated in Section 1.2.1, regarding test standard EN IEC 62885-5:2018 Surface cleaning appliances - Part 5: High pressure cleaners and steam cleaners - Methods of measuring the performance (IEC 62885-5:2018) was approved in 2018. Its intention is to serve the manufacturers in describing parameters that fit in their manuals. This includes the parameters listed in the standards definition document. When any of the parameters listed in the document are used, they shall be noted as being measurements taken in accordance with the document. The standard focuses on efficiency tests of oilheated HPCs, based on the EUnited Voluntary burner efficiency label (see Section 1.3). The Technical Committee did not reach an agreement on test methods for cleaning efficiency, therefore this parameter will be 'under consideration' for future revisions of the standard.

Some manufacturers include specifications on performance in their technical data sheets, e.g. area performance (m^2/h) indicating in-house test protocols at their disposal. Various test laboratories have also carried out tests on behalf of consumer organisations. Measurement of energy and water consumption is essential, but, in order to generate comparative testing data, and enable the relative performance of HPCs to be compared, it crucial to measure the speed and quality of removal of different kinds of soiling from different kinds of surfaces. There are two approaches that can be used, one on pre-soiled and aged surfaces and one on artificial test surfaces.

Pre-soiled and aged surfaces

Measurement of performance of HPCs can of course be performed using pre-soiled and aged surfaces that were available to the laboratory, such as concrete walkways, car parks and block paving around a building, but there is a fundamental problem with this approach, which is that these surfaces by nature tend to be rather variable. To counter the effects of this variability, techniques such as randomisation of the test areas, using multiple test assessors and statistical analysis of the results may be used. Unfortunately, this tends to lead to the need for a large number of test samples and time- and labour-intensive test work.

Artificial test surfaces

Amongst the manufacturers and product testing industry, it is occasionally necessary to devise artificial methods to test products that reproduce the practical usage as much as possible but permit more consistent homogeneous substrates to be used. This enables a far more empirical measurement of performance. In the case of HPCs, it is known that one leading manufacturer in particular has used this approach, and independently a similar method was established in order to test large numbers of products for European consumer magazines. The method involves moving the gun across the surface of prepainted building insulation tiles. The removal of the paint approximates to the removal of

the soiling on outdoor surfaces relatively well, but has the obvious advantage that these substrates can be controlled, largely eliminating any variability in the substrate.

Measurements

Defining a test protocol for assessment of HPCs requires a comparative performance element to be considered, which can be technical performance criteria such as power of the motor, maximum flow rate; and/or cleaning performance criteria.

Environmental performance indicators may include resource consumption / cleaned surface area for predefined soiled surfaces. This can then also be translated to environmental impact/m² (LCA, when including life cycle impact) and EUR/m² (LCC, when including life cycle costs).

Measured parameters for predefined surfaces may include:

- cleaning time;
- cleaning quality;
- water consumption;
- electricity consumption (for electric engines, and for electric hot water heating);
- fuel consumption for hot water and/or combustion engines;
- compressed gas/water consumption (for pneumatic/hydraulic motors respectively);
- detergent consumption.

Development of a test standard

Experience from developing test protocols and standards for other washing appliances including washing machines and dishwashers will be reviewed as part of this process. It is acknowledged that these are automated, pre-programmed washing cycles and that standards, loads, material types/deposits and reference machines and detergents are well established. In contrast, a major consideration is that HPC performance will in part include a 'user' element: how the HPC is used and the cleaning application (e.g. car washing, patio cleaning). Test protocols will need to consider standardised methods with performance related to a given reference or base machine. When evaluating the HPC performance, the 'user' variables such as the distance the lance is held from the target cleaning area and the speed at which the lance is moved across the surface has to be controlled, e.g. by fixing the position of the lance and head and moving the sample at a set rate.

Performance criteria will need to consider cleaning performance levels similar to 'wash performance' with cleaning performance assessed to a defined soiling level. Some examples of cleaning performance tests (not standards) are described in Task 3.

The Technical Committee responsible for the development of performance testing standards is IEC TC 59 'Performance of Household and Similar Appliances'. This TC handles all non-safety standard development. Details of current TC59 projects may be found on the IEC website^Z:

1.2.4 Tolerances, reproducibility and real-life simulation

Many of the standards listed (including EN 60335-1 and EN 60335-2-79) reference ISO standards for tolerances which may include dimensional or other product characteristics. These standards also define the tolerance (or range) of operating conditions.

⁷ <u>http://www.iec.ch/dyn/www/f?p=103:23:31863158667620::::FSP_ORG_ID,FSP_LANG_ID:1275,25</u>

All measurements have a degree of uncertainty regardless of precision and accuracy. This is caused by three factors: the limitation of the measurement instrument (systematic error), the skill of the operator making the measurements and the environmental conditions in which the measurement is taken (random error).

The standard EN60335-2-79 includes an annex for noise emission measurements and this describes the requirements for taking measurement uncertainty into account for this particular parameter.

The measurement uncertainty is developed using statistical techniques and many methods adopt a Root Sum of Squares (RSS) approach to distribution. Laboratories have developed Measurement Uncertainty models as a requirement of accreditation by Accreditation Bodies such as UKAS. This knowledge will be applied during the development of any test protocols.

A third element for consideration is sensitivity. The analysis of the repeatability or robustness of a given test protocol will be necessary in the case of tests for HPC performance due to the likely potential for variation. Statistical techniques will be employed to assess the validity and repeatability of results.

1.3 Legislation (EU, Member State and third country level)

1.3.1 European Union

EU Machinery Directive

The EU Machinery Directive⁸ mainly sets safety requirements for machinery put on the market or put into service in all Member States and aims to ensure their freedom of movement within the European Union. The Directive embraces the Low Voltage Directive⁹ requirements and its requirements must be met. However, any Declaration of Conformity for CE Marking purposes would be made in relation to the Machinery Directive only.

EU WEEE Directive

The WEEE Directive¹⁰ sets selective treatment requirements for the Waste Electrical and Electronic Equipment and its components (including all types of electrical HPCs). The Directive obligates Member States to establish and maintain a registry of producers of electronic and electrical products, and the producers to register in each individual EU country. Each year, producers are required to report the amount of EEE they put on the market, as well as pay an annual registration fee, which is intended to finance the handling of WEEE.

EU RoHS Directive

The RoHS Directive¹¹ restricts (with exceptions) the use of six hazardous materials in the manufacture of various types of electronic and electrical equipment. It is a sector-specific Directive that applies to Electrical and Electronic Equipment (EEE).

In January 2017, the Commission adopted a legislative proposal to introduce adjustments in the scope of the Directive, supported by an impact assessment. The respective legislative act amending the RoHS 2 Directive, adopted by the European Parliament and the Council, was published in the Official Journal on 21 November 2017. The Directive covers HPCs with the amendment. The impact assessment and the legislation can be found on DG Environment's website¹².

⁸ Directive 2006/42/EC on machinery, and amending Directive 95/16/EC (recast).

⁹ Directive 2014/35/EC on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

¹⁰ Directive 2012/19/EU on waste electrical and electronic equipment (WEEE).

¹¹ Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast).

¹² http://ec.europa.eu/environment/waste/rohs_eee/index_en.htm

EU Battery Directive

The Battery Directive¹³ applies to all types of batteries and sets rules regarding the placing on the market of batteries, specifically prohibiting batteries containing hazardous substances such as lead, mercury and cadmium. This means that from 1 January 2017 it was no longer possible to place on the market battery-operated HPCs with nickel-cadmium batteries. Furthermore, it sets rules for collection, treatment, recycling and disposal of waste batteries.

EU Energy Labelling Regulation

The Energy Labelling Regulation¹⁴ requires producers of energy-related products to label their products in terms of energy consumption on a scale of A to G, as well as informing consumers of a number of other parameters, so that consumers could compare the energy efficiency of one product with another.

HPCs fall within the scope of the Energy Labelling Regulation but are not currently covered by any measures.

EU Ecodesign Directive

The Ecodesign Directive¹⁵ provides consistent EU-wide rules for improving the environmental performance of products placed on the EU market. This EU-wide approach ensures that Member States' national regulations are aligned so that potential barriers to internal EU trade are removed.

The Directive's main aim is to provide a framework for reducing the environmental impacts of products throughout their entire life cycle. As many of the environmental impacts associated with products are determined during the design phase, the Ecodesign Directive aims to bring about improvements in environmental performance through mandating changes at the product design stage.

The Ecodesign Directive is a framework directive, meaning that it does not directly set minimum requirements. Instead, the aims of the Directive are implemented through product-specific regulations, which are directly applicable in all EU Member States.

HPCs fall within the scope of the Ecodesign Directive but are not currently covered by any implementing measures.

Electric motors that may be used within HPCs are covered by the following implementing measure:

• Regulation (EC) No 640/2009 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to ecodesign requirements for electric motors with amendment (Commission Regulation (EU) No 4/2014 of 6 January 2014).

Commission Regulation on Ecodesign requirements for electric motors¹⁶

Electric motors are subject to EU Ecodesign requirements that establish minimum requirements for the products within its scope. The Regulation covers electric single speed, three-phase 50 Hz or 50/60 Hz, squirrel cage induction motors that:

- have 2 to 6 poles;
- have a rated voltage up to 1 000 V;
- have a rated power output between 0.75 kW and 375 kW;

¹³ Directive 2006/66/EC on batteries and accumulators and waste batteries and accumulators.

¹⁴ Regulation 2017/1369/EU on setting a framework for energy labelling and repealing Directive 2010/30/EU ¹⁵ Directive 2009/125/EC on establishing a framework for the setting of ecodesign requirements for energy-

related products. ¹⁶ COMMISSION PECHI ATION (EC) No 640/2009 of 22 July 2009 implementing Directive 2005/32/EC of the

¹⁶ COMMISSION REGULATION (EC) No 640/2009 of 22 July 2009 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to ecodesign requirements for electric motors.

• are rated on the basis of continuous duty operation.

The Regulation covers part of the motors present on the market, although some motors designed for specific conditions, for example those that operate immersed in a liquid such as in a sewage system, are excluded from the requirements. The Regulation is currently under review. The review study was finished in 2014 and includes analyses of resource efficiency, reuse and recycling and the level of measurement uncertainty as well as an analysis of possible inclusion of more types of motors¹⁷.

Outdoor Noise Directive

The Outdoor Noise Directive¹⁸ regulates the noise emissions into the environment by outdoor equipment. Some 57 types of equipment are named in the Directive, one of which is high pressure water jet machines. It refers mainly to outdoor machinery, such as that used on construction sites or in parks and gardens.

This Directive is currently under review. An evaluation and impact assessment study for the Directive has been ongoing since May 2017. The results from this study (to be delivered by the first semester of 2018), as well as previously completed studies, will be used as the basis for the upcoming revision process. An online public consultation was launched on 23 January 2018 and ran until 18 April 2018. The study and document on the public consultation can be found on DG Growth's website¹⁹.

Non-Road Mobile Machinery Regulation

The Non-Road Mobile Machinery Regulation (NRMM Regulation)²⁰ defines emission limits for non-road mobile machinery engines for different power ranges and applications. It also lays down the procedures engine manufacturers have to follow in order to obtain type-approval of their engines – which is a prerequisite for placing their engines on the EU market.

NRMM covers a very wide variety of machinery typically used off the road in many ways. It comprises, for example:

- small gardening and handheld equipment (lawn mowers, chainsaws, etc.);
- construction machinery (excavators, loaders, bulldozers, etc.);
- agricultural and farming machinery (harvesters, cultivators, etc.);
- railcars, locomotives and inland waterway vessels.

Stationary machinery is excluded from the scope.

Electromagnetic Compatibility (EMC) Directive

The Electromagnetic Compatibility (EMC) Directive²¹ ensures that electrical and electronic equipment does not generate, or is not affected by, electromagnetic disturbance.

The EMC Directive limits electromagnetic emissions from equipment in order to ensure that, when used as intended, such equipment does not disturb radio and telecommunication, as well as other equipment. The Directive also governs the immunity of such equipment to interference and seeks to ensure that this equipment is not disturbed by radio emissions, when used as intended.

The main objectives of the Directive are to ensure:

¹⁷ https://www.eceee.org/ecodesign/products/special-motors-not-covered-in-lot-11/

¹⁸ DIRECTIVE 2000/14/EC on the approximation of the laws of the Member States relating to the noise emission in the environment by equipment for use outdoors.

¹⁹ http://ec.europa.eu/growth/sectors/mechanical-engineering/noise-emissions_en

²⁰ REGULATION (EU) 2016/1628 on requirements relating to gaseous and particulate pollutant emission limits and type-approval for internal combustion engines for non-road mobile machinery, amending Regulations (EU) No 1024/2012 and (EU) No 167/2013, and amending and repealing Directive 97/68/EC.

²¹ Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility (recast).

- the compliance of equipment (apparatus and fixed installations) with EMC requirements when it is placed on the market and/or put into service;
- the application of good engineering practice for fixed installations, with the possibility that competent authorities of Member States may impose measures in instances of non-compliance.

Pressure Equipment Directive

The Pressure Equipment Directive²² applies to the design, manufacture and conformity assessment of stationary pressure equipment with a maximum allowable pressure greater than 50 kPa. The Pressure Equipment Directive aims to guarantee free movement of the products within its scope while ensuring a high level of safety.

Radio Equipment Directive

The Radio Equipment Directive²³ establishes a regulatory framework for placing radio equipment on the market. It sets essential requirements for safety and health, electromagnetic compatibility, and the efficient use of the radio spectrum. It also provides the basis for further regulation governing some additional aspects. These include technical features for the protection of privacy, personal data and against fraud. Furthermore, additional aspects cover interoperability, access to emergency services, and compliance regarding the combination of radio equipment and software. This Directive applies to remote controls and smart functions that some HPCs are equipped with.

Regulation on appliances burning gaseous fuels

The objective of the Regulation on appliances burning gaseous fuels²⁴ is to ensure that appliances burning gaseous fuels and their fittings on the Union market fulfil the requirements providing for a high level of protection of health and safety, while guaranteeing the functioning of the internal market.

EU Packaging Directive

The Packaging Directive²⁵ provides a definition of the term 'packaging' and sets targets for recovery and recycling of packaging waste. The Directive aims to provide a high level of environmental protection and ensure the functioning of the internal market by avoiding obstacles to trade and distortion and restriction of competition.

1.3.2 Third countries

1.3.2.1 USA

American appliances operating at 50 volts or more must be listed by an appropriate Nationally Recognised Test Laboratory (NRL), e.g. Intertek, UL (Underwriters Laboratories), Canadian Standards Association (CSA), in order to satisfy the requirements of the National Electrical Code NFPA-70 (2017).

The US Energy Star Program aims to promote the most energy-efficient products through verification and labelling of products that meet the Energy Star criteria. HPCs are

²² Directive 2014/68/EU of the European Parliament and of the Council of 15 May 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of pressure equipment.

²³ Directive 2014/53/EU of the European Parliament and of the Council of 16 April 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC.

²⁴ Regulation (EU) 2016/426 of the European Parliament and of the Council of 9 March 2016 on appliances burning gaseous fuels and repealing Directive 2009/142/EC.

²⁵ Directive 1994/62/EC on packaging and packaging waste.

currently not included in the Energy Star product categories²⁶.

1.3.2.2 Canada

Compliance in Canada is similar to the requirements for the USA. The Canadian Electrical Code is C22.1 (2015) and Rule 2-024 Use of approved equipment states: Rule 2-024 has two requirements: equipment must be "approved" and be "approved for the specific purpose".

Natural Resources Canada (NRCan) product categories align with the US Energy Star program.

1.3.2.3 Australia and New Zealand

On 1 October 2012, the Greenhouse and Energy Minimum Standards (GEMS) Act 2012 came into effect, creating a national framework for product energy efficiency in Australia.

Many categories of products are regulated under this Act and requirements include Minimum Energy Performance Standards (MEPS) and Mandatory Energy Performance Labelling (MEPL). Similar requirements apply for products sold in New Zealand.

At the present time HPCs are not covered by the scope of MEPS or MEPL.

1.4 Voluntary schemes

Voluntary burner efficiency label

EUnited Cleaning, the European Cleaning Machines Association, has set up a voluntary labelling scheme EUnited Cleaning Burner Efficiency, which applies to oil-heated HPCs. The scheme sets requirements on thermal exhaust loss, burner efficiency, CO emission and dust emissions.

1.5 Other studies

High pressure cleaners were one of the five product types intensively analysed and to which improvements were sought in the now 20-year old Danish "EDIP" project (Environmental Design of Industrial Products)²⁷. It was a 5-year collaboration between the Danish Industry association, several companies, the Danish EPA and DTU (Technical University of Denmark).

The method consists of six phases:

- 1. Goal definition identifying the specific assessment task to be solved in product development and the potential environmental scenarios related to the decisions taken during that stage of product development.
- 2. Scope definition identifying the methodological requirements for the assessment task in question and the scope of the systems to be studied.
- 3. Inventory analysis compiling an inventory of the environmental exchanges from the systems studied.
- 4. Impact assessment assessing the resource consumption and environmental impacts of the environmental exchanges identified in the inventory.
- 5. Sensitivity analysis identifying which parameters are essential, their uncertainty and the significance of their variation.
- 6. Decision support providing support for the different types of decisions to be taken during product development.

²⁶ https://www.energystar.gov/products

²⁷ http://orbit.dtu.dk/files/4646274/Wenzel.pdf

As a result of the project, a method was developed for Life Cycle Assessment of products - a tool for the environmental specialist and a PC tool. Furthermore, a database with environmental information on about 400 essential materials and processes covering the life cycle of electro-mechanical products as well as other product categories was established.

The Danish study on HPCs found that electricity consumption (of which 80% is in the use stage) and chemicals (being primarily the detergents in the use stage) stand for over 90% of the impact potential. The HPC manufacturer who participated in the study achieved a significant improvement by redesigning the nozzle, i.e. a combined hydraulic and mechanical shaping of the water jet, implying a large improvement of the pressure drop profile of the jet. As a result, about 30% water and energy savings were achieved without a reduction in the cleaning effect.

2 Task 2: Markets

2.1 Generic economic data

This section presents an economic analysis based on official European statistics provided by Eurostat²⁸ concerning production and trade data, according to MEErP. There is not a specific category of 'high pressure cleaners' (HPCs) but HPCs are included in the PRODCOM category 28292230 - Steam or sand blasting machines and similar jet-projecting machines (excluding fire extinguishers, spray guns and similar appliances), corresponding to the HS code 842430.

Apart from being a category with a wide scope, the statistical data needs to be interpreted with care as there is data missing for some countries, particularly for production. However, it represents the official EU source and provides valuable qualitative information about the roles played by each country in this sector. This is further detailed in the following sections.

2.1.1 EU-28 Production of steam or sand blasting machines and similar jet-projecting machines

2.1.1.1 Volume of EU production

Table 6 shows the estimated unit volume of steam or sand blasting machines and similar jet-projecting machines produced in EU Member States and EU-28 totals in the years 2009 to 2016 according to Eurostat.

The figures suggest that Italy and Denmark are the main producers of steam or sand blasting machines and similar jet-projecting machines. However, it is important to note that data is missing for some countries (NA), including Germany, where one of the main manufacturers is located. This leads to a data gap of around 2.6 million units in 2016 of the production listed in single Member States and the EU-28 totals production volume. This data gap corresponds to the production for which there is no data (NA).

²⁸ <u>https://ec.europa.eu/eurostat/web/prodcom/data/database</u>

Country	2009	2010	2011	2012	2013	2014	2015	2016
Austria	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Belgium	NA							
Bulgaria	NA	NA	0.00	0.00	NA	10.00	10.00	NA
Croatia	0.00	0.00	0.00	0.00	61.00	49.00	79.00	85.00
Cyprus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Czech Re- public	NA	NA	302.00	1 062.00	978.00	NA	1 574.00	2 791.00
Denmark	83 651.00	90 363.00	185 263.00	154 093.00	92 693.00	75 053.00	32 857.00	12 531.00
Estonia	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Finland	33.00	24.00	31.00	17.00	5.00	28.00	0.00	0.00
France	3 196.00	52 280.00	NA	NA	74 128.00	NA	NA	NA
Germany	NA							
Greece	0.00	0.00	0.00	0.00	NA	0.00	0.00	0.00
Hungary	NA	NA	NA	NA	294 300.00	314 951.00	310 129.00	29 347.00
Iceland	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ireland	NA							
Italy	686 533.00	784 608.00	906 212.00	87 237.00	112 034.00	145 562.00	201 161.00	146 620.00
Latvia	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lithuania	0.00	4 758.00	1 197.00	477.00	377.00	356.00	205.00	2 451.00
Luxemburg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Malta	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Netherlands	8 424.00	234.00	NA	1 641.00	809.00	NA	12 400.00	1 043.00
Norway	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poland	NA	438.00	518.00	769.00	800.00	2 200.00	2 056.00	1 948.00
Portugal	145.00	149.00	116.00	81.00	115.00	278.00	137.00	NA
Romania	0.00	0.00	0.00	0.00	0.00	0.00	NA	0.00

Table 6. Volume (number of units) of steam or sand blasting machines and similar jet-projecting machines produced in the EU-28 between 2009 and 2016 (Eurostat)

Slovakia	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Slovenia	NA	NA	NA	NA	NA	85.00	107.00	99.00
Spain	4 805.00	4 224.00	4 179.00	1 619.00	1 745.00	2 176.00	2 488.00	2 474.00
Sweden	NA							
United King- dom	3 597.00	4 713.00	7 345.00	9 395.00	8 397.00	5 356.00	6 831.00	6 794.00
EU-25 TO- TALS	4 000 000.00	2 800 000.00	3 972 261.00	2 000 000.00	NA	NA	NA	NA
EU-27 TO- TALS	4 000 000.00	2 800 000.00	3 972 261.00	2 000 000.00	NA	NA	NA	NA
EU-28 TO- TALS	4 000 000.00	2 800 000.00	3 972 261.00	2 000 000.00	2 000 000.00	4 000 000.00	2 000 000.00	2 800 000.00

NB: "NA" means data is not available.

The sum of the individual Member States does not correspond to the EU-28 totals due to lack of data from some Member States.

2.1.1.2 Value of EU production

Table 7 provides an overview of the value corresponding to the number of units produced in certain Member States and EU-28 totals. The main producer seems to be Italy, but data for Germany is not available.

The total value of produced household HPCs in the EU-28 increased from EUR 641 million in 2004 by 46% to EUR 938 million in 2012. This increment contradicts the production trend shown by the unit volumes, which is declining. It suggests that the unit price may be increasing at a pace that overcomes the effect of the lower production, or that the data may not be consistent.

Table 7. Value (in EUR) of steam o	r sand blasting machines and	l similar jet-projecting macl	hines in the EU-28 between 2009 and	」2016 (Eurostat)

Country	2009	2010	2011	2012	2013	2014	2015	2016
Austria	0	0	0	0	0	0	0	0
Belgium	NA	NA	NA	NA	NA	NA	NA	NA
Bulgaria	NA	NA	0	0	NA	131 404	303 712	NA
Croatia	0	0	0	0	372 349	262 516	321 567	526 604
Cyprus	0	0	0	0	0	0	0	0
Czech Re- public	1 250 047	NA	NA	NA	NA	NA	60 612 266	59 744 988

Denmark	36 212 431	21 992 400	20 840 872	23 387 160	24 538 543	20 238 236	19 449 502	19 859 775
Estonia	0	0	0	0	0	0	0	0
Finland	8 793 934	5 713 547	8 038 756	4 602 149	4 043 000	10 975 347	0	0
France	14 666 000	12 095 615	21 469 935	20 610 312	29 484 349	28 602 888	31 053 992	38 286 270
Germany	376 052 84							
	0	381 933 621	431 349 279	460 095 451	NA	459 810 988	NA	NA
Greece	0	0	0	0	NA	0	0	0
Hungary	NA	NA	NA	NA	34 400 717	37 172 411	33 943 600	33 331 855
Iceland	0	0	0	0	0	0	0	0
Ireland	NA	NA	NA	NA	NA	NA	NA	NA
Italy	255 759 00							
	0	226 631 000	328 266 000	247 685 000	203 889 000	355 345 000	493 636 000	285 327 000
Latvia	0	0	0	0	0	0	0	0
Lithuania	0	539 272	959 801	621 959	770 563	822 173	1 023 890	705 241
Luxemburg	0	0	0	0	0	0	0	0
Malta	0	0	0	0	0	0	0	0
Netherlands	NA	20 162 000	NA	23 096 000	18 090 000	18 707 000	19 647 000	21 021 000
Norway	0	0	0	0	0	0	0	0
Poland	0 5 937 795	0 10 258 017	0 14 721 545	0 19 350 611	0 26 316 617	0 22 374 328	0 30 089 195	0 28 288 481
Poland Portugal	0 5 937 795 1 487 968	0 10 258 017 837 735	0 14 721 545 848 078	0 19 350 611 342 444	0 26 316 617 369 091	0 22 374 328 943 956	0 30 089 195 359 565	0 28 288 481 NA
Norway Poland Portugal Romania	0 5 937 795 1 487 968 0	0 10 258 017 837 735 0	0 14 721 545 848 078 0	0 19 350 611 342 444 0	0 26 316 617 369 091 0	0 22 374 328 943 956 0	0 30 089 195 359 565 NA	0 28 288 481 NA 0
Norway Poland Portugal Romania Slovakia	0 5 937 795 1 487 968 0 0	0 10 258 017 837 735 0 0	0 14 721 545 848 078 0 0	0 19 350 611 342 444 0 0	0 26 316 617 369 091 0 0	0 22 374 328 943 956 0 0	0 30 089 195 359 565 NA 0	0 28 288 481 NA 0 0
Norway Poland Portugal Romania Slovakia Slovenia	0 5 937 795 1 487 968 0 0 NA	0 10 258 017 837 735 0 0 NA	0 14 721 545 848 078 0 0 0 NA	0 19 350 611 342 444 0 0 NA	0 26 316 617 369 091 0 0 NA	0 22 374 328 943 956 0 0 11 269 338	0 30 089 195 359 565 NA 0 15 663 075	0 28 288 481 NA 0 0 12 665 575
Norway Poland Portugal Romania Slovakia Slovenia Spain	0 5 937 795 1 487 968 0 0 NA 4 231 291	0 10 258 017 837 735 0 0 0 NA 3 659 575	0 14 721 545 848 078 0 0 0 NA 4 196 896	0 19 350 611 342 444 0 0 NA 3 337 620	0 26 316 617 369 091 0 0 NA 2 928 365	0 22 374 328 943 956 0 0 11 269 338 4 669 424	0 30 089 195 359 565 NA 0 15 663 075 6 173 934	0 28 288 481 NA 0 0 12 665 575 6 076 468
Norway Poland Portugal Romania Slovakia Slovenia Spain Sweden	0 5 937 795 1 487 968 0 0 NA 4 231 291 NA	0 10 258 017 837 735 0 0 0 NA 3 659 575 NA	0 14 721 545 848 078 0 0 0 NA 4 196 896 NA	0 19 350 611 342 444 0 0 0 NA 3 337 620 NA	0 26 316 617 369 091 0 0 NA 2 928 365 NA	0 22 374 328 943 956 0 0 11 269 338 4 669 424 NA	0 30 089 195 359 565 NA 0 15 663 075 6 173 934 NA	0 28 288 481 NA 0 0 12 665 575 6 076 468 NA
Norway Poland Portugal Romania Slovakia Slovenia Spain Sweden United King-	0 5 937 795 1 487 968 0 0 NA 4 231 291 NA	0 10 258 017 837 735 0 0 0 NA 3 659 575 NA	0 14 721 545 848 078 0 0 0 NA 4 196 896 NA	0 19 350 611 342 444 0 0 0 NA 3 337 620 NA	0 26 316 617 369 091 0 0 NA 2 928 365 NA	0 22 374 328 943 956 0 0 11 269 338 4 669 424 NA	0 30 089 195 359 565 NA 0 15 663 075 6 173 934 NA	0 28 288 481 NA 0 0 12 665 575 6 076 468 NA
Norway Poland Portugal Romania Slovakia Slovenia Spain Sweden United King- dom	0 5 937 795 1 487 968 0 0 NA 4 231 291 NA 28 831 347	0 10 258 017 837 735 0 0 0 NA 3 659 575 NA 25 796 186	0 14 721 545 848 078 0 0 0 NA 4 196 896 NA 33 248 836	0 19 350 611 342 444 0 0 0 NA 3 337 620 NA 35 755 423	0 26 316 617 369 091 0 0 NA 2 928 365 NA 31 128 276	0 22 374 328 943 956 0 0 11 269 338 4 669 424 NA 37 250 037	0 30 089 195 359 565 NA 0 15 663 075 6 173 934 NA 46 143 778	0 28 288 481 NA 0 0 12 665 575 6 076 468 NA 28 654 757
Norway Poland Portugal Romania Slovakia Slovenia Spain Sweden United King- dom EU-25 TO-	0 5 937 795 1 487 968 0 0 NA 4 231 291 NA 28 831 347 808 066 39	0 10 258 017 837 735 0 0 0 NA 3 659 575 NA 25 796 186	0 14 721 545 848 078 0 0 0 NA 4 196 896 NA 33 248 836	0 19 350 611 342 444 0 0 0 NA 3 337 620 NA 35 755 423	0 26 316 617 369 091 0 0 NA 2 928 365 NA 31 128 276	0 22 374 328 943 956 0 0 11 269 338 4 669 424 NA 37 250 037	0 30 089 195 359 565 NA 0 15 663 075 6 173 934 NA 46 143 778	0 28 288 481 NA 0 0 12 665 575 6 076 468 NA 28 654 757
Norway Poland Portugal Romania Slovakia Slovenia Spain Sweden United King- dom EU-25 TO- TALS	0 5 937 795 1 487 968 0 0 NA 4 231 291 NA 28 831 347 808 066 39 8	0 10 258 017 837 735 0 0 0 NA 3 659 575 NA 25 796 186 752 115 214	0 14 721 545 848 078 0 0 0 NA 4 196 896 NA 33 248 836 976 987 612	0 19 350 611 342 444 0 0 NA 3 337 620 NA 35 755 423 937 882 093	0 26 316 617 369 091 0 0 NA 2 928 365 NA 31 128 276 NA	0 22 374 328 943 956 0 0 11 269 338 4 669 424 NA 37 250 037 NA	0 30 089 195 359 565 NA 0 15 663 075 6 173 934 NA 46 143 778 NA	0 28 288 481 NA 0 0 12 665 575 6 076 468 NA 28 654 757 NA

TALS	8							
EU-28 TO-	808 276 39				1 000 000 00	1 060 464 23	1 000 000 00	1 200 000 00
TALS	8	752 515 214	976 987 612	937 882 093	0	1	0	0

NB: "NA" means data is not available.

The sum of the individual Member States does not correspond to the EU-28 totals due to lack of data from some Member States.

As can be observed, there are many data gaps (shown by "NA") and also some remarkable figures: Finland shows meagre unit productions that yield values of millions, which may be due to the production of industrial and specialised equipment, or due to an inconsistency. There are some countries such as the Netherlands and Lithuania with dramatic fluctuations in production, which suggests that data may not be fully reliable. The conclusion is that data production must be considered cautiously, and quantitative analysis discarded.

2.1.2 EU exports and imports of steam or sand blasting machines and similar jet-projecting machines

Table 8 provides an overview of exports and imports of steam or sand blasting machines and similar jet-projecting machines by Member State for the year 2016. The time series are presented in Annexes 2 and 3. While import values are consistent, export values show noteworthy figures for Cyprus, Malta and Luxembourg. Time series are omitted in this section to avoid data overloading, since no quantitative analysis is derived from them.

Germany and Italy are by far the largest exporters, followed by Denmark. Meanwhile, France, Germany and the UK are the main importers.

Country	Exports	Imports
Austria	36,032,630	55,249,540
Belgium	84,897,300	65,302,780
Bulgaria	2,149,270	6,283,540
Cyprus	741,410	7,418,000
Croatia	570,090	507,150
Czech Republic	39,621,160	24,425,450
Denmark	49,174,120	39,613,700
Estonia	1,485,840	2,952,750
Finland	2,723,500	14,651,410
France	31,875,470	178,653,730
Germany	629,105,080	190,281,430
Greece	2,134,730	6,170,520
Hungary	27,493,620	17,083,980
Iceland	NA	NA
Ireland	895,140	6,368,730
Italy	324,295,370	62,891,360
Latvia	2,122,860	3,218,010
Lithuania	5,697,530	6,387,950
Luxemburg	509,050	4,355,060
Malta	500	199,970
Netherlands	68,929,810	37,647,160
Norway	NA	NA
Poland	57,700,770	66,297,320
Portugal	1,578,410	14,689,300
Romania	1,707,810	15,128,680

Table 8. Value of exports and imports of steam or sand blasting machines and similar jetprojecting machines in 2016 (Eurostat)

Slovakia	1,204,110	9,980,920
Slovenia	17,592,790	16,820,290
Spain	32,954,560	55,693,060
Sweden	9,006,500	31,209,790
United Kingdom	41,713,390	144,806,240
EU-28 TOTALS	519,069,771	275,426,544

2.1.3 Apparent consumption of steam or sand blasting machines and similar jet-projecting machines

Apparent consumption of EU Member States as shown in Table 9 can be calculated as follows:

Equation 1: Apparent consumption = Production + Imports - Exports

Note that for several EU Member States import and export data have been reported in PRODCOM but production has been reported as zero or not available. These figures should thus be considered with caution, since the apparent consumption may result in negative data. For this reason, Eurostat²⁹ does not recommend this method to estimate consumption. Therefore, the consumption of high pressure cleaners is estimated by other means in this report (see Section 2.2).

In total, for the EU-28 the value of apparent consumption of steam or sand blasting machines and similar jet-projecting machines was around EUR 810 million in 2016.

²⁹ <u>https://ec.europa.eu/eurostat/documents/120432/4433294/europroms-user-guide.pdf/e2a31644-e6a2-4357-8f78-5fa1d7a09556</u>

Country	2009	2010	2011	2012	2013	2014	2015	2016
Austria	622 160	155 862	563 971	-1 349 331	-905 357	-242 587	1 894 940	1 395 661
Belgium	11 606 130	10 150 380	5 898 610	3 769 780	NA	5 051 310	6 083 440	4 035 790
Bulgaria	22 324 661	15 094 325	14 372 896	8 337 200	11 265 495	20 067 174	29 271 644	28 814 968
Croatia	97 818 047	87 364 876	83 441 496	75 053 253	112 790 986	117 595 097	138 381 598	131 747 607
Cyprus	8 612 800	3 652 690	2 110 600	2 642 590	3 977 909	2 280 206	4 003 647	7 203 194
Czech Republic	12 082 458	9 946 865	8 850 828	3 442 204	4 460 231	7 390 946	14 288 525	NA
Denmark	1 545 380	557 940	880 080	1 474 840	1 286 630	1 129 000	1 730 990	1 466 910
Estonia	182 930	190 990	313 820	217 430	316 990	340 350	257 610	199 470
Finland	428 290	881 630	1 261 740	1 260 340	964 050	64 570	1 001 550	1 095 150
France	14 609 330	16 308 560	22 351 050	24 013 940	12 850 270	18 944 300	22 317 410	19 216 910
Germany	NA	NA	3 323 410	2 945 580	NA	3 312 404	4 553 532	NA
Greece	17 474 024	17 099 757	19 647 516	16 426 989	12 470 040	18 082 227	10 882 340	11 927 910
Hungary	5 289 830	5 888 590	4 095 930	4 754 720	9 608 050	14 248 730	9 522 530	8 776 810
Iceland	NA							
Ireland	20 960 491	6 800 490	6 500 672	5 526 240	4 107 093	-7 821 074	-8 152 658	10 299 355
Italy	8 612 800	3 652 690	2 110 600	2 642 590	3 977 909	2 280 206	4 003 647	7 203 194
Latvia	NA	334 910	NA	4 321 270	-6 656 170	5 876 600	121 200	-10 261 650
Lithuania	NA							
Luxemburg	NA	NA	NA	NA	12 979 477	14 808 911	16 850 260	22 922 215
Malta	2 452 120	2 104 170	2 367 060	3 029 130	-2 599 580	2 879 530	2 788 970	3 846 010
Netherlands	NA							
Norway	NA							
Poland	24 844 135	31 082 787	30 440 095	28 033 031	25 377 377	36 556 358	38 372 715	36 885 031
Portugal	111 488 480	118 964 505	134 922 685	153 094 392	153 161 309	153 403 208	162 456 602	185 064 530
Romania	NA	NA	NA	NA	NA	5 650 738	5 876 125	11 893 075

Table 9. Calculation of apparent consumption (in EUR) of steam or sand blasting machines and similar jet-projecting machines between 2009 and 2016 (own calculations based on Eurostat)

Slovakia	10 239 460	7 588 040	11 385 500	17 693 150	10 158 640	10 021 660	NA	13 420 870
Slovenia	NA							
Spain	63 516 600	38 317 901	-9 321 981	-25 203 309	NA	3 613 568	NA	NA
Sweden	6 869 150	-15 848 830	65 458 330	-45 939 790	-84 902 510	81 130 640	224 816 130	23 922 990
United King- dom	-8 516 903	NA	NA	NA	NA	NA	43 223 826	44 549 278
EU-25 TOTALS	520 826 938	461 657 664	571 811 072	449 017 063	NA	NA	NA	NA
EU-27 TOTALS	536 493 868	475 299 604	587 038 052	467 979 083	NA	NA	NA	NA
EU-28 TOTALS	491 034 628	399 592 314	476 933 502	356 398 743	396 083 050	563 697 161	592 593 060	810 375 000

NB: "NA:" means data not derivable as input data (mostly production data) is not available.

2.1.4 EU sales and intra/extra-EU-28 trade of steam or sand blasting machines and similar jet-projecting machines

Table 10 shows the intra- and extra-EU trade of EU Member States in 2016 according to Eurostat statistics on international trade in goods. Time series are omitted since no quantitative analysis is derived from this data.

The trade data shows that the EU-28 is a net exporter of steam or sand blasting machines and similar jet-projecting machines. Germany and the UK are the main importers of from outside the EU-28, followed by Belgium and Italy, while Germany and Italy are the largest exporters. Germany and Italy also have the highest values of exports to other EU Member States (intra-EU exports), with France, Germany and the UK the main destinations of EU internal trade.

	EXTRA-EU-28 (EU	JR)	INTRA-EU-28 (EU	JR)
Country	Imports	Exports	Imports	Exports
Austria	3 761 161	3 911 085	51 488 384	32 121 547
Belgium	37 507 628	7 961 041	27 795 154	76 936 260
Bulgaria	813 652	233 979	5 469 894	1 915 301
Croatia	571 351	270 817	6 846 632	470 588
Cyprus	27 345	570 092	479 813	NA
Czech Republic	2 505 210	8 495 522	21 920 233	31 125 652
Denmark	18 673 711	21 847 536	20 939 973	27 326 583
Estonia	48 719	1 000 990	2 904 037	484 841
Finland	2 191 634	1 666 279	12 459 770	1 057 221
France	16 207 289	19 475 000	162 446 429	12 400 476
Germany	53 071 580	264 362 987	137 209 848	364 742 098
Greece	727 315	915 693	5 443 207	1 219 043
Hungary	1 248 946	232 203	15 835 030	27 261 401
Ireland	514 787	217 246	5 853 944	677 883
Italy	25 931 836	98 055 673	36 959 536	226 239 685
Latvia	52 950	1 212 765	3 165 049	910 080
Lithuania	197 666	4 353 278	6 190 267	1 344 256
Luxembourg	53 723	1 754	4 293 766	510 373
Malta	16 799	NA	183 175	497
Netherlands	19 270 114	20 517 836	18 377 039	48 411 968

Table 10. Intra- and extra-EU-28 trade of Member States with steam or sand blasting machines and similar jet-projecting machines in 2016 (Eurostat)

	EXTRA-EU-28 (EU	JR)	INTRA-EU-28 (EU	IR)
Country	Imports	Exports	Imports	Exports
Poland	8 175 461	20 110 803	59 945 286	38 733 802
Portugal	922 219	777 919	14 542 297	1 828 304
Romania	2 852 838	740 474	12 275 829	967 347
Slovakia	202 423	488 889	9 778 501	715 210
Slovenia	6 147 779	4 530 284	10 672 523	13 062 502
Spain	17 788 902	13 777 432	37 904 151	19 177 129
Sweden	6 810 639	5 452 934	24 399 150	3 553 571
UK	49 132 867	17 889 260	95 673 376	23 824 123
EU-28 Totals	275 426 544	519 069 771	-	-

2.1.4.1 Extra-EU-28 trade

Table 11 gathers the figures of extra-EU-28 trade with selected countries: Australia, Canada, China, Hong Kong (China), Indonesia, Japan, South Korea, Mexico, Norway, Russia, Saudi Arabia, Singapore, South Africa, Turkey and the United States. These countries represent 60% of extra-EU-28 exports and 96% of extra-EU-28 imports.

The main destinations of European exports are Russia, China and the United States. On the other hand, China is by far the largest exporter to the EU-28 (84% of extra-EU-28 imports). It is the only country of the group for which extra-EU-28 trade results in a negative balance.

Country	Imports	Exports
Australia	33 961	13 957 231
Canada	1 771 048	5 872 510
China	222 554 836	57 873 522
Hong Kong (China)	462 471	3 023 856
Indonesia	235 434	2 140 757
Japan	5 470 299	17 121 812
South Korea	2 023 139	9 808 098
Mexico	1 008 901	13 172 198
Norway	2 525 871	28 651 581
Russia	220 899	61 304 333

Table 11: Value (in EUR) of extra-EU-28 trade with some countries in 2016 (Eurostat)

Saudi Arabia	20 271	13 189 521
Singapore	322 082	4 287 440
South Africa	64 048	4 754 617
Turkey	2 914 102	19 833 352
United States	25 457 369	57 182 370

2.2 Market and stock data

2.2.1 Domestic HPCs

2.2.1.1 Historical sales and projections

Detailed market information regarding domestic and professional HPC sales in the EU has been purchased from GfK³⁰ (data gathered from retailers), as well as market information provided by stakeholders. This market data cover the following seven EU countries: Belgium, France, the Netherlands, the UK, Italy, Spain and Germany. In total, the above seven countries represent around 50% of EU-28 households and account for **2.5 million units sales**. Regarding professional HPCs, additional detailed market information has been provided by stakeholders, and together with the GfK dataset, has been double-checked and used as the main source of data for professional HPCs. For both domestic and professional HPCs (as defined in Task 1), the market information compilation above has been considered a sufficiently representative sample to be extrapolated to the EU-28. More specifically, for scaling up the market data to the EU-28, the following parameters has been considered:

- i) Number of households per country (from Eurostat).
- ii) The volume index of GDP per capita in Purchasing Power Standards (PPS), expressed in relation to the European Union (EU-28) average set to 100. If the index of a country is higher than 100, this country's level of GDP per capita is higher than the EU average and vice versa (from Eurostat).
- iii) Geographical pattern where the countries are divided into south and centralnorth Europe. For example, Spain was used as a proxy country to estimate the number of domestic HPC units for Portugal considering also the two parameters above.

Regarding the extrapolation, the HPC sales for each country lacking data has been done by normalising the data gathered for the seven countries with the number of households of that particular country and its PPS which reflects the purchase consumers' ability. The aggregated sales of the seven countries, representing nearly half of the EU-28 households, were used as a proxy for all other EU-27 countries apart from the southern European countries where data from Spain were used as a proxy (to also capture geographical patterns).

Figure 4 presents the summation of HPC sales calculated for the EU-28 as well as the forward and backward projections, from the year 1987 to 2050. In 2017, the domestic HPC sales (in units) are calculated to be **3.5 million units**. Based on the historical data, forward and backward projections (curve fitting with regression analysis) were performed. Forward projection was made based on regression analysis up to the year 2025 and from 2026 to 2050 a minor decline in the growth trend was estimated assuming a minor decline in the growth of the EU market in the decade after 2040, as

³⁰ https://www.gfk.com/

the market penetration rates gradually increase. By 2030 the domestic HPC sales are expected to increase to **4.9 million units per year** and by 2050 to **5.7 million units per year**.

Figure 4. Estimated historical sales of domestic HPCs for the EU-28 for 2007-2017 along with forward and backward projections covering the period 1997-2050

2.2.1.2 Lifetime calculations

The lifetime of a product varies due to many factors such as the utilisation/user patterns, quality of manufacturing materials and components. The average lifetime of a product can be obtained using the Weibull distribution, which is a probability distribution widely used for survival analysis and expected product lifetime calculations, based on probability for a period of time. The Weibull distribution for different products has been studied by several authors such as Monier et al. (2013)³¹, who presented the lifespan distribution of products put on the French market in 2005. The shape of the Weibull distribution depends on two factors: i) the shape parameter, and ii) the scale parameter.

For calculating the average lifetime [years], Equation 2 was used.

Equation 2: Average Lifetime = $e^{\ln \Gamma(1+\frac{1}{\gamma})} * \lambda + \nu$

where γ is the shape parameter; λ is the scale parameter; ν is the delay parameter.

'Retiring' is the probability of an HPC failing in a given year and 'surviving' the probability of it surviving a given year. The breakdown probability (or Probability Density Function), which corresponds to the probability of a product failing in a given year, is calculated for a period of 50 years as follows by Equation 3.

Equation 3: % retiring (t) = $\frac{\gamma}{\lambda} * \frac{t - \nu^{\gamma - 1}}{\lambda} * e^{-\frac{t - \nu^{\gamma}}{\lambda}}$

³¹ <u>Study on the quantification of waste of electrical and electronic equipment (WEEE) in France. Household and similar arising and destinations. December 2013. A study carried out on behalf of ADEME and OCAD3E by BIO Intelligence Service S.A.S.(V. Monier, M. Hestin, A. Chanoine, F. Witte, S. Guilcher) Contract n°1202C0048.</u>

if t < v then % retiring = 0

On the other hand, the survival probability or Cumulative Distribution Function, which corresponds to the probability of a product surviving in a given year, is calculated for a period of 50 years as follows by Equation 4.

Equation 4: % surviving (t) = $e^{-\frac{t-v^{\gamma}}{\lambda}}$

if t < v then % surviving = 100%

The survival for the next year is calculated based on the evolution of the survival probability as follows by Equation 5:

Equation 5: % surviving to next year (t) = $\frac{\% \text{ surviving (t)}}{\% \text{ surviving (t-1)}}$

if t < v then % surviving = 100%

A delay period of 2 years was selected (v=2) for the analysis, as EU law requires manufacturers to give the consumer a minimum **2-year guarantee (legal guarantee)** as a protection against faulty goods, or goods that do not look or work as advertised. In some countries national law may require **longer guarantee periods**. Thus, for a period of 2 years the survivals are considered as 100% as the units that fail within this period are most probably returned by the consumers and repaired or replaced by the manufacturers at their own expense.

The Weibull stochastic approach was selected. Using this approach, the average lifetime is calculated with the same constant parameters for all years (shape parameter, scale parameter and delay parameter). This means that the average lifetime will be the same for all products manufactured in different periods. In addition, two parameters are included in the estimation of the survival probability of the product depending on its production year. The survivals calculation is done by tracking the survival probability of the sales per year for a certain number of years and modifying this estimate when the product reaches a certain age. The two parameters included are the adjustment period (in years) and the adjustment factor (in percentage of survivals). These correction factors avoid an overestimation of the stock as they further reduce the probability of an old product remaining in the stock. A Belgian study³² found an average estimated life time of 12 years at End-of-Life for domestic high pressure cleaners. Sources amongst manufacturers and consumer organisations indicate that the expected lifetime is 10-12 years. To better define the lifetime Weibull distribution of HPC, information regarding the failure rate was considered.

More specifically, according to a survey performed by 'Which?³³' among their members who owned a **domestic HPC** (sample size of 2,277), the faults in the first nine years were identified as follows:

- faults after the 1st year: 3% (covered by the legal guarantee);
- faults after the 3rd year: 9%.

Feeding this information (average lifetime of around 10 years with faults in the first years) into the EcoModelling $tool^{34}$, a HPC-specific lifetime Weibull distribution is

³² Confidential.

³³<u>https://www.which.co.uk/reviews/pressure-washers/article/which-pressure-washer-brand/most-reliable-pressure-washer-brands</u>

³⁴ This tool commissioned by the DG JRC has the objective to facilitate the development of studies in support of EU Environment and Sustainability policies. It includes a bottom-up stock and cash flow model that provides quantitative information underpinning product policy impact assessment (IA). The policy areas of potential use of the model are ecodesign, energy label, ecolabel, green public procurement (GPP), extended product responsibility and product end-of-life policy.

produced and presented in Figure 5. For domestic HPCs, the shape parameters of the Weibull distribution are: shape factor γ =1.15; scale factor λ =7.90; delay factor v=2 (associated with the guarantee). The average lifetime (Weibull) is calculated as **9.5 years**. Figure 5 also presents the percentage of retiring HPCs for a 50-year period by 5-year periods.

Figure 5. a) The domestic HPC Weibull lifetime distribution with information on the annual % of retiring products and the cumulative % of survivals and b) % of retiring products for a period of 50 years divided into 5-year periods

Based on the estimated sales for the period 1997-2050 in combination with the lifetime Weibull distribution (presented in Figure 5) as defined for the case of domestic HPCs and described in the section above, the stock of domestic HPCs at EU-28 level was calculated for the same period utilising the JRC EcoModelling tool⁴.

Figure 6 presents the in-use stock of domestic HPCs in the EU-28 indicating the survival units (the units that survive each year) together with the new sales. For the year 2017 the overall stock is estimated to be around **20 million units**. The in-use stocks are expected to increase to around **27 million units** by 2030 and around **33 million units** in 2050.

The units for each year that fail (based on the Weibull lifetime) were considered as the Waste Electronic and Electrical Equipment (WEEE) stream. Figure 7 presents the estimated WEEE fraction per year at EU-28 level for the domestic HPCs. For 2017 this WEEE fraction is at the level of **3 million units per year** and it increases to **4.4 million units per year in 2030** and **5.4 million units per year** in 2050 (these calculations are not based on collection rates from Eurostat data).

***Note:** The stock and WEEE estimations start from the year 1987. It has been assumed that before that year the domestic HPC sales were not significant. Nevertheless, this assumption does not influence the current and future in-use stocks (from 2018) as all units produced prior to 1987, based on the lifetime calculations, should have been retired by 2017 (see Figure 5b).

Figure 6. Estimated 'survival' and 'new sales' in-use stocks of domestic HPC units at EU-28 level

Figure 7. Estimated WEEE fraction generated by domestic HPCs at EU-28 level

2.2.1.4 Market penetration of domestic HPC at EU-28 level

Table 8 presents the market penetration rates (%) of domestic HPCs at EU-28 level. Market penetration per year was defined as the total number of in-use HPCs (new sales and survivals) per year divided by the overall number of EU-28 households. In 2017, 8.3% of EU-28 households had a domestic HPC in use. Within a 9-year period the market penetration increased 0.9%. The trend is steadily increasing. As the penetration rates are still low, provided that the lifetime of domestic HPCs is not extended, it is not expected that the EU market will become saturated until 2050. However, the estimated market penetration rate is an EU-28 average, and it is expected that there are significant variations among the EU-28 countries such as the purchasing power, the number of households and the climatic conditions (impacting the need for a HPC). Countries like Belgium for example have much higher penetration rates according to a report from GfK.

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017
Market pen- etration (%)	7.4	7.6	7.7	7.6	7.6	7.7	7.8	8.1	8.3

Table 8.	Estimated	market	penetration	(%)	at EU-28 leve	2
	Lotinnatea	mantee	periodiation	(''')		

2.2.2 Professional HPCs

2.2.2.1 Historical sales, projections and market segmentation

Professional HPCs are analysed as a separate market to domestic HPCs, based on their drive technology and delivery of hot or cold water. The analysis is based on detailed market information that has been provided by stakeholders, representing around 75% of the EU sales in economic terms according to their estimations. The extrapolation to 100% was performed based on this market share estimation. The extrapolated data was also confirmed and complimented by purchased market data from GfK. Figure 9 presents the market segmentation as it is for 2017 for professional HPCs.

Cold water professional HPCs had a 78% market share of the professional HPCs in 2017. More specifically for the year 2017, cold water electric single-phase HPCs had a 59% market share; three-phase HPCs had a 16% Hor market share and combustion-engine-driven HPCs had only a 3% market share. Cold w

Hot water professional single-phase HPCs had a 12% share of the professional HPC market; three-phase (industrial) HPCs had a 10% market share. Less than 1% of the market (a few hundred units) is hot water combustion-engine-driven. In total, hot water HPCs have a significant market share, 22% of the professional market, and need to be analysed separately from cold water ones.

Figure 9. Market segmentation for professional HPCs for 2017

Figure 10 presents the aggregated sales of professional HPCs, cold and hot water, for the years 2011-2017; as well as the backward and forward projection/forecast of the market evolution performed with curve fitting regression analysis. Overall, cold and hot water

professional HPC sales are around 200 000 units over recent years; with **203 000 units** sold in 2017 of which **155 000 units** were cold water professional HPCs and **48 000 units** were hot water. Hot water professional HPCs currently account for around 68 000 units sales per year. Cold water HPC projections show a steady increase for the following years while hot water HPCs show a slighter increase rate. Cold water professional HPC sales are expected to grow to **169 000 and 194 000** units in 2030 and 2050 respectively. Hot water professional HPC sales are expected to grow to 50 000 and 59 000 units in 2030 and 2050 respectively.

Figure 10. EU-28 estimated sales for cold and hot water professional HPCs for 2011-2017 along with forward and backward projections covering the period 1997-2050

2.2.2.2 Lifetime calculations

Input from stakeholders regarding the lifetime of professional HPCs indicates that it is 10 years (or 1 500 working hours). Most professional HPCs are easily repairable, since their components can be removed and repaired, in contrast with domestic HPCs which have a much lower reparability potential. In professional HPCs for example, the high pressure water pump is changed or refurbished every 500 hours, extending their lifetime. Based on this input, Figure 11 presents the Weibull distribution, tailored for professional HPCs. The shape parameters are: shape factor γ =3.00; scale factor λ =9.30; delay factor v=2 (associated with the minimum guarantee). The average lifetime (Weibull) is calculated as 10.30 years. Figure 11 also presents the percentage of retiring HPCs for a 50-year period by 5-year periods.

Figure 11. The professional HPC Weibull lifetime distribution with information on the annual % of retiring products and the cumulative % of survivals and b) % of retiring products for a period of 50 years divided into 5-year periods

2.2.2.3 In-use stock and WEEE calculations

The stock analysis has been done separately for professional cold water HPCs and for professional hot water HPCs in the EcoModelling tool using the Weibull lifetime distribution for professional HPCs (similarly to the domestic HPC stock analysis) as discussed in Section 2.2.2.2. Figure 12 and Figure 13 present the estimated in-use stock (composed each year by the 'survival' units and the 'new sales') for the period 1997-2050 at EU-28 level for cold and hot water HPCs respectively.

Figure 12. Estimated 'survival' and 'new sales' in-use stocks of cold water professional HPCs at EU-28 level

In 2017, cold water professional HPCs accounted for 656 000 units as 'survivals' and 155 000 units as new sales, in total **811 000 units** of in-use stock. The in-use stock is expected to increase to **904 000 and 1 042 000 units** in 2030 and 2050, respectively.

Hot water professional HPCs accounted in 2017 for around **234 000 units** of in-use stock, which is expected to rise to **265 000 units** and **317 000 units** in 2030 and 2050, respectively.

2.3 Market trends

This section presents the analysis of the main market trends and evolution of the main HPC characteristics, both domestic and professional, for a 10-year period (2007-2017) based on the market data gathered.

2.3.1 Input power (for domestic HPCs)

The input power is one of the main performance characteristics of HPC equipment as also described in Tasks 1 and 4. Figure 14 presents the evolution of the HPC input power of domestic HPC equipment based on sales numbers. The following conclusions can be drawn:

- A general trend is that the domestic HPC market slightly moves to more powerful units.
- The Main power category is the >1.3 kW and <=1.6 kW with a market share of 50% in 2017; followed by the >1.6 kW and <=1.9 kW with a market share of nearly 30% in 2017.
- The low power units (<= 1.3 kW) represent the smallest fraction, with a decrease in recent years. This market share was absorbed in the higher power categories.
- The upper input power for domestic HPCs is defined as 3.3 kW (3.3 kW is the typical limit for single-phase HPCs as described in Task 1). The input power

categories above 1.9 kW up to 3 kW show an increase in their market shares in the last 3-4 years, confirming the first conclusion.

Figure 14. Market share (%) of input power categories for domestic HPCs for the years 2007-2017

2.3.2 Maximum water pressure

The maximum water pressure is the second main performance characteristic of HPCs. Figure 15 presents the evolution in maximum water pressure for the years 2007-2017.

Figure 15. Market share (%) of input power categories for domestic HPCs for the years 2007-2017

The following conclusions can be drawn:

- The maximum pressure over recent years has generally increased.
- The category <=80 bar represented nearly 50% of the market in 2007, but over the following years this share decreased and was absorbed in more powerful categories until 2017 when the market share dropped significantly, to less than 5%.
- The category >100 bar and <= 120 bar currently has the largest market share (around 55%), representing the low-performance domestic HPCs. The category >120 bar and <=130 bar has had the second largest market share in recent years (around 25% in 2017) and the market share of the >140 bar and <=150 bar category is around 10%.
- The category > 160 bar had around 8% of the market share in 2017. This category represents more powerful and high-performance professional HPC units. A separate analysis has been performed for this most powerful maximum water pressure category and is presented in the following section.

2.3.3 Above 160 bar maximum pressure and cordless HPCs

As observed in the previous section, over the last 5 years HPCs with a maximum water pressure >160 bar (or 16 MPa) significantly increased their market share from 1-2% to 8% in 2017. Focusing more on this category (>160 bar), this increase can be attributed to a cold water professional and domestic HPC sales increase, as can be seen at Figure 2.12. The information confirms that sales of HPCs capable of a maximum water pressure >160 bar were at the level of 230 000 units in 2017. Sales of hot water HPCs with a maximum water pressure >160 bar are stable over recent years at 7 000-9 000 units.

Another observation regarding the market trends is on cordless HPCs (Figure 16), sales of which were almost zero in previous years. In 2017, they accounted around 43 000 units. The expected wider use of batteries in domestic appliances in the years to come will lead to further growth of this market as also confirmed by stakeholders.

Figure 16. Unit sales of hot and cold water HPCs capable of a maximum water pressure above 160 bar and unit sales of cordless HPCs with low water pressure for the period 2008-2017

2.3.4 Price trends

For more information regarding price trends, see Section 2.4.1.

2.4 Consumer expenditure base data

This section presents purchase prices, installation, repair and maintenance costs as well as applicable rates for running costs (e.g. electricity, water) and other financial

parameters (e.g. taxes, rates of interest, inflation rates). This data will be input for later tasks where Life Cycle Costing (LCC) for new products will be calculated.

The average consumer prices and costs experienced by the end user throughout the product lifetime are determined by unit prices in the following categories:

- average price per HPC unit for each category;
- consumer prices of consumables (detergent and water);
- consumer prices of electricity and fuel;
- inflation and discount rate;
- installation costs;
- repair and maintenance costs;
- disposal tariffs and end-of-life cost.

The costs are shown as unit prices for domestic and professional products, litres of consumable, units of spare parts and components, kWh electricity and so on. The total life cycle costs, which also depend on use patterns and frequency of events, are assessed in Task 5.

2.4.1 Average unit values of HPCs produced in the EU-28

The average unit prices of HPCs vary greatly according to the product subgroup technology. Thus the average prices of HPC units are reported separately as also defined in the product scope (see Task 1) for:

- cold water single-phase (domestic use);
- cold water single-phase (professional use);
- cold water three-phase (professional use);
- cold water with combustion engine (professional use);
- hot water single-phase (professional use);
- hot water three-phase (industrial or semi-industrial use);
- hot water with combustion engine (professional use).

Figure 17 presents the price evolution for the years 2011-2017 based on stakeholders' inputs and commercial market reports for the above categories. Hot water HPCs with a combustion engine have a much higher average price compared to the other categories, at EUR 6 000 per unit. The year 2017 has been used as the reference year for the average prices; all prices are converted to 2017 prices. To better illustrate the price evolution of the rest of the HPC categories, the average unit price of hot water HPCs with combustion engines is not included in the graph. The following conclusions can be drawn:

- The overall value of the domestic HPC EU market for 2017 has been estimated at EUR 600 million.
- The overall value of the professional HPC EU market for 2017 has been estimated at EUR 120-140 million.
- Combustion-engine-driven hot water HPCs are a niche product (with an average price of EUR 6 000 per unit).
- Single-phase professional cold water HPCs cost around double the average price of a domestic cold water HPC unit.
- The average prices have been relatively stable in recent years, with a small increasing trend for cold water HPCs with combustion engines, and the cold water three-phase professional HPCs.

• The average prices do not overlap, as they are discrete for each HPC category. The second and third most expensive HPC categories are the hot water HPC (three-phase) and the cold water combustion engine HPC, respectively.

Figure 17. Average price per unit: historical evolution and forecasts per HPC subcatego-

2.4.2 Consumer prices of consumables (detergent and water)

Domestic high pressure cleaners may use cleaning agents to improve the cleaning performance in some situations, for example to remove persistent dirt or grease or to clean specific surfaces such as wood, plastic, vehicle exterior, etc.

The consumer prices of detergents used in domestic HPCs have been gathered from a sample of retailers in Spain³⁵. Table 12 displays this information for the different types and formats of detergents identified.

Type of detergent and format	Av. price / price range (€/L)
Universal (2/5L)	2.5
Universal (1L)	6.3
Wooden surfaces (2-2.5L)	3 - 12
Wooden surfaces (1L)	13.5
Plastic surfaces (1L)	7.5 - 15

Table 12. Retail prices of detergents (incl. VAT) in Spain in 2018

hidrolimpiadora/s?ie=UTF8&page=1&rh=i%3Aaps%2Ck%3Adetergente%20hidrolimpiadora;

https://www.manomano.es/detergentes-para-limpiadoras-de-alta-presion-2999;

³⁵<u>http://www.leroymerlin.es/productos/jardin/hidrolimpiadoras/detergentes_para_hidrolimpiadoras.html;</u> <u>https://www.amazon.es/detergente-</u>

https://www.agrieuro.es/accesorios-para-hidrolimpiadoras/detergentes-arena-para-hidrolimpiadoras-c-67 669 1259.html accessed 22 August 2018

Exterior ceramic and concrete surfaces (2L)	3.5
Natural stone (1L)	8.3
Roofs (5L)	4
Grease and oils (5L)	2.5
Ultra-foam cleaner for vehicle exterior (1L)	8
Ultra-foam cleaner for vehicle exterior (2.5L)	4
Rim cleaner (0.5L)	18
Bicycles / motorcycles cleaner (2.5L)	4
Ecological	9
Concentrated universal (0.5L)*	12 (*1.2)
Concentrated universal for professional uses (5L)*	5 (*0.5)

* To be diluted at 1:10.

The cost of water varies across the EU, at national and regional levels, and it is subject to very diverse taxation³⁶. MEErP estimated the EU average price at \in 3.70 / m³ in 2011, with an annual nominal growth rate of 2.5% (more or less equal to inflation).

2.4.3 Consumer prices of electricity/fuel

The annual energy prices are taken from the PRIMES $Model^{37}$, which provides the prices referred to the year 2013. The 2017 prices have been calculated using the inflation rates mentioned in the next section. Both 2013 and 2017 prices are shown in Table 13.

	2013 END USER PRICE (in € cents/kWh)					
Electricity	2005	2010	2015	2020	2025	2030
Average price	11.7	13.6	14.4	15.3	15.7	16.1
Industry	8.4	9.7	9.7	9.8	9.9	10.0
Households	15.6	17.2	19.0	20.3	20.9	21.2
Services	12.7	14.8	15.7	17.1	17.6	17.9
	2017 END U	SER PRICE (ir	<u>n € cents/kWh</u>)		
Electricity	2005	2010	2015	2020	2025	2030
Average price	12.0	14.0	14.8	15.7	16.1	16.5
Industry	8.6	10.0	9.9	10.0	10.1	10.2
Households	16.0	17.6	19.5	20.8	21.4	21.8
Services	13.0	15.2	16.0	17.5	18.0	18.4
	2013 END USER PRICE (in € cents/kWh)					
	2005	2010	2015	2020	2025	2030
Diesel oil						

	Table	13.	Annual	prices	of	energy	pro	oducts
--	-------	-----	--------	--------	----	--------	-----	--------

³⁶ <u>https://www.eea.europa.eu/data-and-maps/indicators/water-prices</u>
 ³⁷ <u>https://ec.europa.eu/clima/policies/strategies/analysis/models_en#PRIMES</u>

Industry	5.8	7.4	6.6	8.5	9.1	9.7
Households	6.6	7.4	6.6	9.0	9.8	10.7
Services	5.5	6.2	5.4	7.4	8.0	8.8
Fuel oil						
Industry	2.8	3.9	3.1	4.4	4.9	5.3
LPG						
Industry	7.4	7.8	5.6	8.3	9.0	9.5
Households	7.7	8.6	6.7	9.5	10.2	10.8
Services	6.6	7.1	5.5	7.6	8.1	8.7
	2017 END USER PRICE (in € cents/kWh)					
	2005	2010	2015	2020	2025	2030
Diesel oil						
Industry	5.9	7.6	6.8	8.8	9.3	9.9
Households	6.8	7.6	6.8	9.2	10.1	10.9
Services	5.6	6.4	5.6	7.5	8.2	9.0
Fuel oil						
Industry	2.8	4.0	3.1	4.5	5.0	5.5
LPG						
Industry	7.6	8.0	5.7	8.5	9.2	9.8
Households	7.9	8.8	6.8	9.7	10.4	11.0
Services	6.7	7.3	5.6	7.8	8.4	8.9

2.4.4 Inflation and discount rates

All economic calculations are made with 2017 as the base year, as this is the latest year for which complete data is available. Inflation rates from Eurostat³⁸ (see Annex 4) are applied to scale purchase price, electricity prices, etc. to 2017 prices. A discount rate of 4% is used in accordance with the MEErP methodology.

2.4.5 Installation costs

Installation of HPCs by a professional is only necessary for stationary fixed HPCs. All other types can be directly used by the end user. According to stakeholders' feedback, installation costs can be estimated by applying Equation 6.

Equation 6: Installation costs [EUR] = 20*Input power [kW] + 1500

As this is just a very rough and uncertain estimate, it will need to be confirmed or otherwise corrected by the stakeholders.

2.4.6 Repair and maintenance costs

Based on the results of endurance tests provided by the stakeholder, the most typical failures of domestic HPCs are:

• carbon brushes in the motor are worn and no longer make contact;

³⁸ <u>https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=tec00118&plugin=1</u>

- bearings of the motor become defective;
- bearings of the pump become defective;
- leakages.

Retailers offer several spare parts for domestic HPCs, meaning that they may require replacement over the lifetime of the product. However, the failure rates of these parts have not been evaluated in the endurance tests covered by this study. The user guides provided by manufacturers recommend the cleaning of the filter in the water connection and the nozzle. An internet search shows the retail prices of the spare parts, gathered in Table 14^{39} .

Table	14. Retail	prices of	spare parts	s of dome	estic hiah	pressure	cleaners ir	n Spain	in 2018
		p11000 01	opule pule		could ingit	pressure	cicalici o li	. Opani	

	Prices (€/unit) (VA	「included)
Spare part	Min.	Max.
Normal nozzles (including rotatory)	7	27
Special nozzles	40	65
Connections	3	12
Cylinder heads	23	54
Brushers	12	65
Elbows	5	24
Capacitors	7	23
Adaptors	3	40
Water filters	6	20
Switches and cables	23	40
O-rings	3	10
Hoses (per m)	4	6
Trigger guns	20	50
Wheels	7	9
Lances	5	60

In the case of professional high pressure cleaners, manufacturers indicated that the pump is the crucial component that requires the most maintenance. An internet search shows that there are specialised retailers offering pumps and repair kits with the spare parts that are needed the most frequently. The prices of the sample collected in this study⁴⁰ are displayed in Table 15.

Table 15. Prices of spare parts of professional high pressure cleaners in Spain in 2018

⁴⁰ <u>https://www.accesoriosaltapresionagm.com/</u> accessed 27 August 2018.

³⁹ <u>https://www.fiyo.es/hidrolimpiadora;</u> <u>https://www.erepuestos.es/hidrolimpiadora/catalogue.pl?path=984134</u>

Prices (€/unit) (VAT excluded)

	Min.	Max.
Pumps	340	5160
Ceramic piston	19	124
Valves	5	74
Oil seals	2	11
Collars	6	33

If the repair or maintenance requires a professional service, the average EU labour cost in the category "Industry, construction and services (except public administration, defence, compulsory social security)" is to be used, as shown in Table 16. The labour cost levels are based on the latest Labour Cost Survey (currently 2012) and an extrapolation based on the quarterly Labour Cost Index (LCI). The data covered in the LCI collection relates to total average hourly labour costs⁴¹.

 Table 16. Average total labour costs for repair services

Year		2000	2004	2008	2012	2013	2014	2015	2016
EU-28 (EUR/h)	countries,	16.7	19.8	21.5	23.9	24.2	24.5	25.0	25.4

2.4.7 Disposal tariffs/ taxes

Since HPCs are covered by the WEEE Directive and producers are responsible for paying a WEEE tax or in some other way financing the EOL treatment, it is assumed that end users will not experience any further EOL costs. The WEEE tax paid by manufacturers is assumed to be reflected in the sales prices of HPCs to end users. In the end user life cycle cost calculations, the EOL cost is therefore set to zero.

2.5 Recommendations

2.5.1 Refined product scope from the economic/commercial perspective

Hot water combustion engine HPCs are very expensive and niche products (the average price per unit is EUR 6 000), which is also reflected in the low sales volumes at the level of a few hundred units in the EU-28.

2.5.2 Barriers and opportunities for Ecodesign from the economic/ commercial perspective

Barriers:

 There seems to be a slight but apparent trend towards the increase of power and water pressure of entry-level domestic products. This means that the demand for more powerful products is increasing, while these products may be less waterand energy-efficient, depending on their cleaning performance and the usage pattern. This suggests that customers may be associating higher power with

⁴¹ <u>http://ec.europa.eu/eurostat/cache/metadata/en/lc_lci_lev_esms.htm#unit_measure1475137997963</u>
better performance, though that appraisal is not supported by any harmonised performance test. Consumers may even regard the environmental performance as detrimental to the cleaning performance of the product.

• There is no standard for cleaning performance/efficiency in order to differentiate the environmental performance of various products with different characteristics with a variety of cleaning activities.

Opportunities:

- Extending the lifetime and/or the reparability potential of domestic HPCs can have significant positive effects which will be examined in the following tasks.
- While this product is far from being ubiquitous, like for example washing machines, the penetration rate shows an increasing trend (around 1% yearly). Therefore, Ecodesign measures could lead to larger savings in the medium and long terms.
- As the EU exports these products to third countries, which in the future may adopt resource and energy efficiency measures similar to Ecodesign and Energy Labelling, this would also constitute a competitive advantage for EU manufacturers.

3 Task 3: Users

3.1 Introduction

3.1.1 Scope of the task

The scope of Task 3 is to analyse and report the consumer behaviour for use of high pressure cleaners (HPCs) and the related environmental impact in the use phase and the end-of-life phase.

This section in particular focuses on user behaviour and system aspects while product technologies are analysed in Task 4.

Task 3 comprises identification, analyses and reporting of:

- system aspects use phase, for ErP with direct energy consumption effects;
- system aspects use phase, for ErP with indirect energy consumption effects;
- end-of-life behaviour regarding life, repair, maintenance, disposal, recycling, reuse, etc.;
- local infrastructure regarding supply of energy, water, etc.;
- recommendations on refined product scope and barriers and opportunities.

3.1.2 Data collection

Data and information were requested from the manufacturers, consumer organisations and other stakeholders via two questionnaires (the first a broader request for data and information and the second focused on professional products) and via direct contacts. Technical data and data on user behaviour such as annual usage were received from some of the manufacturers and manufacturer associations. Furthermore, the study team received from a stakeholder data on laboratory tests of 43 domestic HPCs. Moreover, anonymised test data on 32 HPCs was provided by the team member Intertek and use was made of public data from the consumer organisation Which? (UK), who provides reviews, test results (mainly subjective testing of cleaning ability, ease of use, noise and water usage) and advice guides of HPCs.

To supplement this data, the study team collected technical specifications data of domestic and professional HPCs from public web sites of five major manufacturers (Kärcher, Nilfisk, Bosch, Stihl and IPC), in total on 160 models.

All this data is the main data source for the use phase analyses in Chapters 3 and 4.

3.2 System aspects of use phase, for ErP with direct energy consumption effects

High pressure cleaners have direct energy consumption effects because they use energy (electricity and/or fuels) for pumping - and for hot water HPCs also heating - the water. For a very limited amount of usage situations, indirect energy consumption effects are also relevant (see Section 3.3). In addition to energy, the HPCs also use water, cold or hot, for the cleaning, and in some cases also detergent to assist in the cleaning process.

The purpose of this subtask is to collect and analyse data that is relevant to environmental and resource impacts during the use phase and report these impacts.

The relevant user parameters that influence the environmental and resource impact during the use of the HPCs are:

- The cleaning tasks selected by the users according to their cleaning needs.
- The product usage in terms of selection of accessory (type of nozzle and cleaning attachment), cold or hot water (where relevant), possible detergent and dosage,

and the actual usage (pressure, water flow, distance and angle to surface, speed of movement, etc.)

- Frequency of use, i.e. how often and how much are the various cleaning tasks needed, which results in a number of uses and time per use which can be summed up to the total annual use in hours. The time per use depends on the HPC cleaning performance and versatility. For example, if the HPC is suited to car cleaning it would be used more often and if it cleans more efficiently the usage time would be decreased assuming the cleaning tasks are constant.
- Time in idle, standby and off modes (dependent on type of HPC), i.e. how long is the HPC plugged in without using it, how much is it on but idling and not cleaning?

These user parameters combined with the product characteristics in terms of cleaning performance, versatility and product efficiency result in a certain level of consumption of electricity, fuels, water and detergent.

3.2.1 Cleaning tasks and cleaning performance

Domestic HPCs are used in households for a variety of domestic cleaning purposes such as cleaning patios, terraces, pavement, brickwork, swimming pools, cars, motorcycles, bikes, caravans and generally removing dirt.

Professional HPCs are also used for several purposes but often acquired for specific cleaning tasks such as graffiti removal and cleaning tasks such as cleaning stables, swimming pools, walls, monuments, communal park areas, vehicles (buses, tractors, trucks, etc.), machinery and engines.

Hot water HPCs are used for the same purposes as cold water HPCs, the difference being that the subjects to be cleaned may have more strongly attached dirt and especially oil, grease, etc.

For some cleaning tasks, special nozzles and attachments should be used. More information is gathered in Chapter 4.

The cleaning performance depends on several parameters, mainly the following:

- Preparation of the object or surface to be cleaned: Soaking with chemicals (e.g. for graffiti), detergent (for car wash) and water may ease the removal.
- Water volume: A higher volume is needed for transporting the dirt away from the area to be cleaned.
- Water pressure: A higher pressure is needed for dirt strongly attached to the subject; however, more porous areas may be damaged by the pressure.
- Water temperature (cold, hot): Hot water may be needed to remove grease, oil, fat, etc. and may for some purposes substitute the use of detergent. Very hot water can heat up the subject for quick drying afterwards, e.g. for avoiding corrosion.
- Detergent mixed in the water: Detergent can speed up and improve the cleaning process and can, as for hot water, be needed for removal of grease, oil, fat, etc. It may also provide disinfection of the subject.
- Characteristics of the fluid jet: The size and form of the jet impacted by the type of nozzle, lance and other accessories is relevant for cleaning performance and for the type of subject to be cleaned.

The basics of cleaning with a HPC can be seen in Figure 18.

Figure 18. Cycle of the basic factors for cleaning (provided by the manufacturer Nilfisk)

The figure shows the parameters to be taken into account in the selection of the HPC for the specific cleaning purposes regarding water volume, pressure and ability to heat water, add detergent and use specialised accessories. Furthermore, after purchase, the specific cleaning task should determine the operator's choice of water volume, pressure, temperature (in case of a hot water HPC), detergent dosage and possible accessory.

3.2.2 Frequency and time of use

Through the questionnaire, the study team received estimates on frequency and the time of use is from an industry organisation, two manufactures and a consumer organisation, as shown in **Table 17**.

Type of HPC	Stakeholder 1	Stakeholder 2	Stakeholder 3	Stakeholder 4	Stakeholder 5
Domestic HPC	12 uses/year, average duration of 10-30 minutes/use Totally: 2-6 hours/year	25 uses/year, average duration of 10-20 minutes/ time Totally: 4-8 hours/year	25 uses/year, average duration of 2 hours Totally: 50 hours/year	15 uses/year, average duration of 1 to 3 hours Totally: 15- 45 hours/year	26 hours/year
Profession al HPC	50-55 uses/year, average duration of 3 hours/use Totally: 150 hours/year	250 uses/year, average duration of 30 minutes/use Totally: 125 hours/year	100 uses/year, average duration of 2 hours/use Totally: 200 hours/year	No information	800/900 hours/year

Table 17:	Stakeholder	informatio	n on	usage	patterns

As observed in the table, there is an apparent gap between the stakeholders' replies, ranging from 2 to 8 hours per year, and up to 50 hours per year. Large variations in replies regarding the usage pattern can also be observed for professional HPCs. It is assumed that the largest values may include the time that the HPC is idle during its usage where the consumed energy is negligible.

To better address the uncertainty in the usage patterns of domestic and professional HPCs, two scenarios were considered based on the stakeholders' input (see Table 18): i) a 'conservative' low usage scenario, and ii) a high usage scenario.

Based on the above figures, the study team established the assumptions of active annual use for domestic and professional HPCs presented in Table 18. Due to the uncertainty in the assumptions – which will considerably influence the following analyses – we provide a range of usage times and the average, which will be used in all the analyses in this report.

Battery-driven cold water domestic HPCs are excluded from the calculations of usage time because they are for special purposes and we assume that the usage time would be very low. Furthermore, battery HPCs constituted less than 1% of total sales in 2017.

Stationary cleaners are used for a variety of purposes in agriculture, industry, shipping and the food industry with very different usage patterns. No information or data was received on the usage. The study team has assumed the same usage pattern as for professional HPCs.

Type of HPC	Low usage scenario Annual usage in hours/year	High usage scenario Annual usage in hours/year
Domestic HPC	2-8, average: 5	2-50, average: 26
Professional HPC	100-200, average: 150	100-900, average: 500
Stationary HPC	100-200, average: 150	100-900, average: 500

Table 18. Assumptions of annual hours of active use and of cars washed per year

The following analyses on energy, water and detergent consumption are based on the 'low usage scenario'. Task 7 provides an uncertainty range for the energy and water consumption during the use phase based on the high usage scenario.

3.2.3 Use of hot water

Most of the HPCs use cold water in the cleaning process, but for some cleaning tasks, especially for removing grease and oil from surfaces, hot water will enhance the cleaning process.

Typically, users needing hot water cleaning would acquire a hot water HPC, which heats the water internally using electricity or fuels. However, it is often also possible to connect a hot water supply to the HPC, which then is able to clean using externally heated hot water.

These two usage situations are described below. The water heating technology is detailed in Chapter 4.

3.2.3.1 Use of internally heated hot water

When cleaning tasks require hot water, the solution is most often a HPC with a hot water heater built in. In our data set of marketed products, there is only one hot water HPC, which is characterised by the manufacturer as domestic (i.e. "DIY and gardening").

The maximum pressure delivered is typically lower for hot water machines due to the pressure requirements of the heating coils. This is further detailed in Task 4.

The data set with technical data collected from the manufacturers' web sites shows that the average pressure for hot water HPCs is about 20% lower than for cold water machines. This also means that when a user buys a hot water HPC, which delivers lower pressure and is more expensive (due to the hot water system) than a cold water HPC, it is because there is a real need for hot water for a substantial part of the use. The study team has assumed that half of the use of a hot water machine (both mobile and stationary professional machines) is with production of hot water.

3.2.3.2 Use of externally heated hot water

Many cold water HPCs including domestic types can be supplied with either cold or hot water up to a certain temperature. The maximum temperature is set by the manufacturer and determined by the materials and often the plastic components used in the low and high pressure water system. The temperature is stated in technical specifications and in the user manual.

The supply will typically be from the building's hot sanitary water system. In our data set of products on the market, 90% of all products (160 in total) allow supply of water at temperatures above cold water temperature, while 54% of them allow temperatures above 50 °C and 40% above 60 °C. Traditionally, a building's hot water system produces water between 50 °C and 60 °C. The energy consumption for heating the water is thus not part of the energy consumption of the HPC and it has an indirect energy consumption effect, which will be included in the analyses in Section 3.3.

A limitation of the use of a hot water supply is the availability of hot water taps outside, where HPCs often are used. Where outside water taps are available, most often they are cold water taps. Manufacturer input confirms that connection of hot water to the HPC does not usually take place. Apart from expert opinions, no data was available. The study team has estimated a relatively low share of use of externally heated hot water, namely 5%.

3.2.3.3 Assumptions for use of hot water

Based on the above assessments, Table 19 presents the assumed proportion of hot water for the main categories of HPC. The proportion is related to the total annual usage time.

Type of HPC	Proportion of hot water (%)
Cold water HPC (externally heated hot water)	5
Hot water HPC (internally heated hot water) Hot water HPC (internally heated hot water)	50
Cold water stationary HPC	0
Hot water stationary HPC (internally heated hot water)	50

Table 19. Assumed proportion of hot water (%) used for main HPC categories

3.2.4 Use of detergents

3.2.4.1 Aim and precautions

Adding detergents to the water will increase the cleaning efficiency by reducing the surface tension. However, most dosage systems are simple and may add excessive

detergent compared to the need. Furthermore, the rinse stage to remove the dirt requires extra water to remove the detergent.

3.2.4.2 Dispensing systems and size

Chapter 4 describes details of the detergent dispensing systems. A conclusion is that the dosage regulation systems are very imprecise, and it is not possible to select a specific required amount of detergent.

Of the 160 HPCs in the dataset of marketed HPCs, 40 informed about the maximum detergent dosage in litres/minute. With this figure, we calculated the maximum dosage as a percentage of the maximum water flow rate. The minimum, average and maximum percentage dosages are shown in Table 20.

Detergent dosage	Litres/minute	% of max flow
Minimum	0.30	2.6%
Average	0.66	5.5%
Maximum	1.33	8.0%

Table 20. Minimum, average and maximum detergent dosage

Only 4 of the 40 models stating dosage data are domestic HPCs and the average of their maximum dosages was 20% lower than for the professional HPCs, but with only 4 data points for domestic HPCs the sample is too small to use this figure for all domestic HPCs. Based on this, we use 5.5% as the average maximum dosage. We assume furthermore that, when detergent is needed for a particular cleaning task, the maximum dosage is added due to the imprecise regulation.

3.2.4.3 Types of detergents

There are a broad variety of detergents and other cleaning agents like soaps sold under HPC manufacturer brands and under other brands. They include detergents for universal types of cleaning and specialised detergents for cleaning specific materials such as wood or natural stone, vehicle exteriors, and for grease removal, paint removal (e.g. for graffiti) disinfection, etc. Biodegradable detergents also exist.

3.2.5 Use phase resource consumption

The use phase resource consumption includes energy (electricity and fuel), water and detergent consumption. The following analysis is based on the 'low usage scenario' (see Table 18); however, Task 7 provides the range of the overall HPC energy and water consumption during use for low-high usage scenarios.

3.2.5.1 Energy consumption

HPCs consume energy for the motor and control systems and in the case of hot water HPCs also for heating. The energy for the motor and the heating system can be either electricity or fuel (petrol, diesel) in these combinations:

- electric motor;
- electric motor and fuel heater;
- electric motor and electric heater; this is a special case and added as a subcategory in this section;
- fuel (combustion) motor;
- fuel (combustion) motor and fuel heater.

That is to say, for electric motors, the energy consumed may be both electricity and fuel, while for combustion motors only fuel is consumed. Battery-powered HPCs are left out as previously mentioned due to the assumption of low usage time and due to low sales.

Only consumption during active use is included, i.e. energy consumption in off and standby modes and in on-idle mode is not included. For domestic HPCs, laboratory test data that has been provided by a stakeholder shows no energy consumption in off mode and in on mode with the spray turned off. All have a 'deadman' trigger switch, i.e. when the handle is not pressed, the HPC does not spray and is not in use. The professional types also have such a function, though some machines are still active at a lower consumption level for a limited period of time. No further data was available, but the consumption impact is assumed to be marginal and has not been included in the analyses.

The technologies are described in Chapter 4.

Table 21 and Table 22 present the calculated annual use phase energy consumption for an average model in each category with an electric motor and a combustion motor, respectively. After the tables, the assumptions and the calculations are shown.

Table 21. Calculated use phase annual energy consumption of the 'Low usage scenario', for the range of annual usage and average model in each category with electric motor

Type of HPC	Average load motor (kW)	Annual usage Range and average (hours/year)	Annual electricity consumption Range and average (kWh/year)	Annual fuel consumption Range and average (kWh/year)
Domestic cold water	1.8	2-8, average: 5	4-15, average: 10	
Domestic hot water	1.8	2-8, average: 5 (50% with hot water)	4-15, average: 10	30-118, average: 74
Professional cold water 1- phase	2.9	100-200, average: 150	294-587, average: 440	
Professional cold water 3- phase	7.7	100-200, average: 150	766-1533, average: 1150	
Professional hot water 1- phase	2.5	100-200, average: 150 (50% with hot water)	254-507, average: 380	1801-3603, average: 2702
Professional hot water 3- phase	6.7	100-200, average: 150 (50% with hot water)	674-1348, average: 1011	3545-7090, average: 5318
Professional hot water 3- phase, electric	5.0	100-200, average: 150 (50% with hot	1695-3390, average: 2543	

heater		water)		
Stationary cold water	13.9	100-200, average: 150	1385-2770, average: 2078	
Stationary hot water	6.8	100-200, average: 150 (50% with hot water)	683-1366, average: 1024	3888-7776, average: 5832
Car washer stationary HPC	13.9	2000-8000, average 5000 cars / year	745-2980, average: 1863	

Assumptions and calculations:

- Average load motor: The load is calculated from the maximum connected load (nameplate power, for HPCs with an electric heater, the heat load is subtracted) reduced by 10%. The maximum connected load is typically higher during start-up than continuous operation at maximum working pressure. The reduction, 10%, is approximate and based on an average reduction from the dataset, where the actual power load was measured at maximum working pressure.
- Annual hours of use: Assumptions presented in Table 18.
- Annual electricity consumption: Multiplication of average load and annual hours of use. For the electric heater HPC, the figure is corrected for only 50% hot water use, see Table 19.
- Annual fuel consumption: This is calculated using the full load heating oil consumption (kg/h) from the dataset, multiplied by 50% hot water usage of annual hours of use and converted to kWh with the net calorific value (gas/diesel oil 43.38 MJ/kg⁴²).

Type of HPC	Fuel consumption motor (kg/h)	Fuel consumption heating (kg/h)	Annual usage Range and average (hours/year)	Annual fuel consumption Range and average (kWh/year)
Professional cold water combustion	2.87		100-200, average: 150	3457-6914, average: 5185
Professional hot water combustion	2.67	5.50	100-200, average: 150 (50% with hot water)	6537-13074, average: 9805

Table 22. Calculated use phase annual energy consumption of the 'low usage scenario', for the range of annual usage and average model in each category with a combustion motor

Assumptions and calculations:

⁴² "Energy Statistics MANUAL" OECD, IEA, Eurostat. <u>http://ec.europa.eu/eurostat/ramon/statmanuals/files/Energy_statistics_manual_2004_EN.pdf</u>

- Fuel consumption motor: It is calculated based on data for a specific motor used for several combustion HPCs, Honda GW 270, which consumes 2.4 litres of petrol per hour to deliver 5.1 kW (continuous rated power) at max rpm corresponding to 0.3486 kg/h/kW. Only data for a petrol motor is used because 8 of 11 combustion motor HPCs are petrol ones.
- Fuel consumption heating: From the dataset of products on the market.
- Annual hours of use: Assumptions presented in Table 18.
- Annual fuel consumption: It is calculated with the sum of motor fuel consumption multiplied by annual hours of use plus fuel (gas oil) consumption heating (kg/h) from the dataset, multiplied by 50% hot water usage of annual hours of use and converted to kWh with the net calorific value (gas/diesel oil 43.38 MJ/kg⁴).

3.2.5.2 Water consumption

The calculated annual water consumption in the use phase for an average model in each category is shown in Table 23. After the table, the assumptions and the calculations are shown.

Table 23. Calculated use phase annual water consumption of the 'low usage scenario', for the range of annual usage and average model in each category

Type of HPC	Average in-use water flow (I/h)	Annual usage Range and average (hours/year)	Annual water consumption Range and average (m ³ /year)
Domestic cold water	383	2-8, average: 5	1-3, average: 2
Domestic hot water	450	2-8, average: 5	1-3, average: 2
Professional cold water single-phase	540	100-200, average: 150	54-108, average: 81
Professional cold water three-phase	992	100-200, average: 150	99-198, average: 149
Professional cold water combustion engine	687	100-200, average: 150	69-137, average: 103
Professional hot water single -phase	463	100-200, average: 150	46-93, average: 69
Professional hot water three-phase	969	100-200, average: 150	97-194, average: 145
Professional hot water three-phase, electric heater	646	100-200, average: 150	65-129, average: 97
Professional hot water combustion engine	706	100-200, average: 150	71-141, average: 106

Stationany cold water	2528	100-200,	253-506,
		average: 150	average: 379
Stationary hot water	889	100-200,	89-178,
		average: 150	average: 133

Assumptions and calculations:

- Average in-use water flow: Based on the dataset of marketed HPCs combined with the dataset from laboratory tests of domestic HPCs. These tests show:
 - average rated maximum flow (I/h) of all products: 429 I/h;
 - average in-use maximum water flow with standard nozzle: 375 l/h.

The in-use maximum water flow is 13% lower than the rated maximum flow. For the average in-use water consumption we assume a slightly higher reduction of the rated maximum flow, i.e. 15%, to account for situations where the maximum flow rate is not used. We use the same figure for all categories in the absence of specific data for the other categories. This figure is used to calculate the in-use water flow based on the average rated maximum flow (I/h) from the dataset of marketed HPCs.

- For the car washer, data is from a study of a Spanish petrol station with a car washing facility⁴³.
- Annual hours of use: From Table 18.
- Annual water consumption: The water flow per hour is multiplied by the annual hours of use per year.

3.2.5.3 Detergent consumption

We have found no data on specific uses of detergent; only general advice to consumers on detergent use. The consumer organisation Which? specifically recommends use of detergent for car washing but does not mention it for other purposes. Another consumer organisation advises in most cases not to use a detergent and only for grease removal. This organisation also states that a HPC in general uses more detergent than needed due to poor regulation of the amount added and that in many areas it is forbidden to clean cars with detergent.

The calculated annual detergent consumption in the use phase for the range of annual usage and for an average model in each category is shown in Table 24. After the table, the assumptions and the calculations are shown.

Table 24. Calculated use phase annual detergent consumption for the range of annual usage and average model in each category

Type of HPC	Annual water consumption Range and average (m ³ /year)	Proportion using detergent (%)	Annual detergent consumption Range and average (I/year)
Domestic cold water	1-3, average: 2	10	4-17, average: 10.5
Domestic hot water	1-3, average: 2	10	4-17, average: 10.5

⁴³ LIFE11 ENV/ES/000569. Acción A5. Parte 2 – Estudio de consumos de agua en la Estación de Servicio de Miramón, San Sebastián (País Vasco). June 2014.

Professional cold water single-phase	54-108, average: 81	10	297-594, average: 446
Professional cold water three-phase	99-198, average: 149	10	545-1091, average: 818
Professional cold water combustion engine	69-137, average: 103	10	378-756, average: 567
Professional hot water single-phase	46-93, average: 69	10	254-509, average: 382
Professional hot water three-phase	97-194, average: 145	10	533-1066, average: 800
Professional hot water three-phase, electric heater	65-129, average: 97	10	355-711, average: 533
Professional hot water combustion engine	71-141, average: 106	10	388-776, average: 582
Stationary cold water	253-506, average: 379	10	1391-2781, average: 2086
Stationary hot water	89-178, average: 133	10	489-978, average: 733

Assumptions and calculations:

- Annual water consumption: From Table 23.
- Proportion using detergent: We have assumed that half of the domestic users use detergent for cleaning of cars, motorbikes and bikes; and that about one third of the usage is car, motorbike and bike cleaning; and that two thirds of this one third use is with added detergent, i.e. a total of 10% of all pressurised water use is with added detergent. Domestic hot water units are assumed to consume half the amount of detergents that cold water units consume. For professional users, we have assumed that they use detergent for all kinds of vehicles and for a variety of other specific cleaning tasks, such as disinfection in food processing and graffiti removal, and we assume that about 10% of all cleaning tasks are with added detergent. For car washers, we assume that 30% of the total water consumption is with added detergent.
- Annual detergent consumption: The annual water consumption is multiplied by the proportion using detergent and by the average dosage (5.5% as indicated in Section 3.2.4.2).

3.3 System aspects of the use phase, for ErP with indirect energy consumption effects

There are two indirect energy consumption effects described in the following sections.

3.3.1 Energy consumption effect of hot water externally heated

The first effect is - as described in Section 3.2.3 - due to a usage situation for cold water HPCs where they are connected to hot instead of cold water from a building's sanitary hot water system. In this usage situation, the HPC delivers hot water heated externally and the affected energy system is not only the HPC consuming energy but also the hot water heater consuming energy for heating the water. This energy consumption needs to be included in the analyses to reflect the full impact.

The extent of this usage situation is described in Section 3.2.3, where the energy consumption effect is calculated.

According to the preparatory study for eco-design of water heaters⁴⁴, an assumption for the energy calculations is a cold water supply temperature of 10 °C, which is heated to 60 °C. We use the same assumption here.

For the type of water heater and energy used to heat the water, we use the following approximate assumption based on the preparatory study for eco-design of water heaters⁴⁵:

- 60 % natural gas water heaters and combi boilers;
- 40 % electric storage and instantaneous heaters.

The calculated annual energy consumption in the use phase for an average model in each relevant category is shown in Table 25. After the table, the assumptions and the calculations are shown.

Table 25. Calculated use phase annual energy consumption for externally heated hot water for the range of annual usage and average model in each relevant category

Type of HPC	Annual water consumption Range and average (m ³ /year)	Proportion of hot water externally heated (%)	Annual heated water consump- tion Range and average (m ³ /year)	Natural gas consump- tion Range and average (kWh/year)	Electricity consump- tion Range and average (kWh/year)
Domestic cold water HPC	1-3, average: 2	5	0.038-0.153, average: 0.096	2-7, average: 4	1-4, average: 2
Professional cold water single- phase	54-108, average: 81	5	2.701-5.402, average: 4.052	118-236, average: 177	63-126, average: 94
Professional cold water three-phase	99-198, average: 149	5	4.958-9.915, average: 7.436	216-432, average: 324	115-231, average: 173

Assumptions and calculations:

- Annual water consumption: From Table 23.
- Proportion of externally heated hot water: From Table 19.

⁴⁴ Preparatory Study on Eco-design of Water Heaters – Task 3 Report (Final). VHK. 2007.

⁴⁵ Preparatory Study on Eco-design of Water Heaters – Task 2 Report (Final). VHK. 2007.

- Annual heated water consumption: Annual water consumption multiplied by proportion of externally heated hot water.
- Natural gas consumption: Calculated as heating the water to 50 °C with 80% (referred to net calorific values) boiler efficiency multiplied by 60% (proportion for natural gas, see above).
- Electricity consumption: Calculated as heating the water to 50 °C with 100% efficiency multiplied by 40% (proportion for electricity, see above).

3.3.2 Energy consumption effect of the water supply

The other indirect energy consumption effect is due to the energy consumption of the public water grid and the sewage system for supplying and disposing of water used by the HPC. The amount of water to be disposed of is less than the water supplied because not all water used will go into the sewage system; some will soak into the ground and soil.

For the purpose of this study, reduction of water consumption will be analysed and reported as the amount of water saved and not in terms of saved energy in the public water supply because it is small compared to the HPC energy consumption. See also MEErP page 66, 3.4 Example shower head or water tap⁴⁶.

3.4 Total use phase resource impacts

Table 26 shows the total resource impacts in terms of consumption of electricity, fuel (diesel, petrol and natural gas), water and detergent covering both the direct and the indirect energy consumption effects. The figures are totals of the figures of the previous tables.

Type of HPC	Annual electricity consumption Range and average (kWh/year)	Annual fuel consumption Range and average (kWh/year)	Annual water consumption Range and average (m ³ /year)	Annual detergent consumption Range and average (I/year)
Domestic cold water	4-15, average: 10	2-7, average: 4	1-3, average: 2	8-34, average: 21
Domestic hot water	4-15, average: 10	30-118, average: 74	1-3, average: 2	4-17, average: 11
Professiona l cold water single- phase	356-713, average: 534	118-236, average: 177	54-108, average: 81	297-594, average: 446
Professiona I cold water three- phase	882-1764, average: 1323	216-432, average: 324	99-198, average: 149	545-1091, average: 818

Table 26. Total use phase annual electricity, fuel, water and detergent consumption for the range of annual usage and average model in each category summarising the figures in previous tables

⁴⁶ Methodology for Ecodesign of Energy-related Products. MEErP 2011. Methodology Report. Part 1: Methods.

Professiona I cold water combustion engine	0	3457-6914, average: 5185	69-137, average: 103	378-756, average: 567
Professiona I hot water single- phase	254-507, average: 380	1801-3603, average: 2702	46-93, average: 69	254-509, average: 382
Professiona I hot water three- phase	674-1348, average: 1011	3545-7090, average: 5318	97-194, average: 145	533-1066, average: 800
Professiona I hot water three- phase electric heater	1695-3390, average: 2543	0	65-129, average: 97	355-711, average: 533
Professiona I hot water combustion engine	0	6537-13074, average: 9805	71-141, average: 106	388-776, average: 582
Stationary cold water	1385-2770, average: 2078	0	253-506, average: 379	1391-2781, average: 2086
Stationary hot water	683-1366, average: 1024	3888-7776, average: 5832	89-178, average: 133	489-978, average: 733

3.5 Cleaning performance test methods reflecting typical usages

3.5.1 Opportunities for cleaning performance test methods

As described in Chapter 1, no commonly used cleaning performance test method in the industry exists. Some manufacturers use their own test method when designing new products; others just use different kinds of dirty surfaces.

When establishing energy policy measures, it is preferable to base them on efficiency, i.e. the quantity of resources (energy, water and detergent) consumed for a certain number of cleaning tasks performed. The cleaning tasks in tests should reflect an average use and at the same time be sufficiently simple for the test laboratories to run and repeatable in order that different test laboratories would get the same result.

For instance, for vacuum cleaners a test standard is under development after a standardisation request by the Commission. The test consists of an amount of test dust spread over a specific type of carpet and hard floor and a special machine simulates a user vacuum cleaning the carpet and the floor. The energy consumption and the amount of dust pick-up and of dust re-emission are measured.

A test standard for HPCs could follow the same principle as the vacuum cleaners one and define a number of different surfaces with different kinds of soiling and define a certain cleaning pattern. The resource consumption for removing the soiling should be measured

and a method derived to decide the amount of dirt removed within a given time or to decide the time needed to remove all the dirt.

The surfaces would need to be thoroughly defined artificial test surfaces in order that the tests can be reproducible in different test laboratories. Artificial test materials are widely used for the performance assessment of a wide range of household appliances including washing machines and dishwashers. The test materials are defined within the test standards.

Additionally, the test method should describe the potential variables in HPC usage that could affect the result, e.g. type of nozzle (or other attachment), height and angle of nozzle relative to the surface, speed of the water jet passed over the surface, water pressure, temperature, detergent. A time-based element may also be included because users' expectation of cleaning performance would include how fast they can clean surfaces. Furthermore, potential damage to the surface due to excessively high jet impact should be measured or assessed. However, some manufacturers have questioned the ability of a test method to capture the real cleaning performance of HPCs. They argue that the test method would not be capable of representing the many types of surfaces and soiling and the variation of usage parameters (angle, distance, etc.)

Another and simpler way of assessing the cleaning performance is to measure a potential cleaning performance based on measurement of HPC output parameters such as the system force (the force of the water flow leaving the nozzle), the pump force (the force of the water before the nozzle) and the spray pattern (over a certain distance from the nozzle). A combination of these factors into an index would provide an approximation of the cleaning impact the HPC can achieve.

A third and even more simple way would be to calculate an index based on a few important parameters such as maximum pressure and maximum water flow.

The test methods may also include measurement of the temperature of the water leaving the HPC for the hot water units.

3.5.2 Examples of test methods

In the following subsections we describe briefly four different real-life test methods used in tests of HPCs for inspiration.

3.5.2.1 Intertek US

Intertek US has developed a cleaning power index from a number of factors: System force (based on unit and nozzle), impact force (based on the actual force at the tip of the hose, pre-gun) and a spray pattern shape factor (based on an internally developed grid applied to each pattern). Each component is indexed against limits rather than against each other. These factors were weighted 40:20:40 resulting in one index figure for each product.

3.5.2.2 Intertek UK

Intertek UK uses defined test surfaces in the form of painted insulation panels with matte black paint (simulating soiling) applied in a standardised way so the soiling level is consistent. The HPC is fixed in a rig at a defined height to optimise the performance of the pressure washer. The soiled insulation tiles are run under the cleaning water jet at a set speed. The width of the soiled tile that is cleaned by the HPC is measured. This figure is translated into real-life performance. In other words, if a pressure washer was able to clean a large width, this would translate to cleaning a large area in a given period of time and in a practical situation it would clean a large external area. Consequently, the pressure washer would be relatively effective and rapid at the cleaning task. Conversely, if a pressure washer was only capable of cleaning a narrow strip, this would translate to cleaning only a small area in a given period of time. This pressure washer would be relatively ineffective and slow at the cleaning task.

3.5.2.3 Cleaning performance and durability laboratory tests for domestic HPCs

A stakeholder has provided recent (2017) tests conducted in an external test laboratory for 43 domestic HPCs for a broad range of parameters including the performance. Their performance test consists of laboratory tests and real-life tests.

The laboratory test used foam panels soiled with water-based paint, where the spray nozzle moved at predefined speed over the panel. The width of the paint removed was quantified by two options: All paint removed and some paint removed. The uniformity of the cleaning was also measured. The test is done with a spray nozzle and with a rotating jet nozzle. The test reported that the width of the effective cleaning for the spray nozzle was 40-65 mm, mainly due to the construction of the nozzle. The rotating nozzle was reported to have a wider effective cleaning width, 45-135 mm.

The real-life test consisted of cleaning of 1 m^2 of dirty pavement, recording and assessing the time for cleaning, quality of cleaning, water consumption, etc. Energy consumption can be calculated by the time for cleaning and a measured value for power at use. Tests were performed twice by different test experts to ensure uniformity. In the following figures, we show the results of the tests (average of the two tests) with a standard nozzle and a rotating nozzle for all tests with a sufficient and similar cleaning quality according to a qualitative assessment by two experts carrying out the tests. It has to be noted that manufacturers warn against the use of a rotating jet nozzle for cleaning vehicles or bicycles as it could cause damage to paint, tyres, tyre valves or ingress of water into bearings if used at too close a distance.

NB: Average values are 10 l/m2 and 48 Wh/m2..

Figure 20 show a large variation in water and energy consumption for the same cleaning task using the standard nozzle. The most consuming HPC consumes 2.6 times more water and energy than the least consuming HPC. More information about the results of these tests and the specifications of the models tested is available in Section 4.

Figure 19. Water and energy consumption for cleaning 1 m² of pavement with a standard nozzle

NB: Average values are 10 I/m^2 and 48 Wh/m²..

Figure 20. Water and energy consumption for cleaning 1 m² of pavement with a rotating nozzle

NB: Averages are 8 l/m² and 35 Wh/m².

The figures show significant variations in water and energy consumption for the same cleaning task using the rotating nozzle. The most consuming HPC consumes 2.9 times more water and 2.5 times more energy than the least consuming HPC.

Laboratory tests were also performed with durability tests consisting of 300 cycles, each of them lasting 40 minutes: 15 minutes with highest pressure and maximum water flow, 3 minutes with a closed nozzle jet and the machine on, 12 minutes with the highest pressure and maximum water flow and 10 minutes pause. The durability tests are performed with a standard nozzle as well as with a rotating nozzle. As can be seen from Figure 21, not all HPCs survived the 300 cycles; 21.5% even failed prior to reaching 140 cycles. This indicates the large variation in durability performance of domestic HPCs.

Figure 21. Durability tests of domestic HPCs for 300 cycles

3.5.2.4 Which?

Which? (independent UK consumer organisation) regularly tests domestic HPCs in relation to their consumer information⁴⁷. Their performance test consists of manual testing by experienced testers. They wash a 1 m^2 patch of several different types of surface including concrete, block paving, paving slabs, and softwood decking. The surfaces are consistently and heavily soiled.

The surfaces are cleaned using the main lance and fan nozzle. They measure how long it takes and rate how clean the surfaces are. They also look for any signs that the pressure washer has damaged the surface or material between slabs and paving blocks during cleaning. In addition, they test what surface area of concrete can be cleaned in one minute. They also assess how well the pressure washer cleans the bodywork, windows and wheels of a heavily soiled car.⁴⁸

3.6 End-of-life behaviour

The user end-of-life behaviour substantially influences the life-cycle environmental impact. If the real-life lifetime is short due to no maintenance or replacement before the HPC is worn out without giving the product a second life or if the user does not dispose of the HPC correctly as electrical waste, it will have a negative environmental impact. This is further described below.

In Task 2 the lifetime used for the modelling is described, while in Task 4 the technical lifetime is analysed.

3.6.1 Product life influenced by user behaviour

Longer-lasting products often have the potential to reduce their overall life cycle impacts. With a longer lifetime, the impact of consumption of raw materials is reduced since the impacts of mining, production, transportation, etc. are spread over a longer period of time and displace the need for new equipment⁴⁹. The product lifetime can be interpreted in numerous ways. Different definitions exist (see Table 27) from other Ecodesign studies⁵⁰.

⁴⁷ <u>https://www.which.co.uk/reviews/pressure-washers</u>

⁴⁸ <u>https://www.which.co.uk/reviews/pressure-washers/article/how-we-test-pressure-washers</u>

⁴⁹ Deloitte (2016) Study on Socioeconomic impacts of increased reparability – Final Report. Prepared for the European Commission, DG ENV.

⁵⁰ https://www.eceee.org/ecodesign/products/airco-ventilation/

 Table 27. Definitions of lifetime

The design lifetime	The behavioural lifetime	Definition used in this study
Intended lifetime regarding functioning time, the num- ber of functioning cycles etc. foreseen by the manu- facturer during design of the product, provided that it is used and maintained by the user as intended.	The number of years until the device is replaced for reasons other than technical failure, e.g. due to new fea- tures, upgrading to a more powerful model or just wanting a new model.	The term "lifetime" used in this study must be under- stood as the period (i.e. the number of years) dur- ing which the appliance is used and consumes elec- tricity.

Very little information is available on the behavioural lifetime. A Belgian study⁵¹ identified the HPC penetration in Belgian households to be 39% in 2015, where the households with HPCs each had 1.1 on average. This could indicate that some households had one or several older HPCs which were probably not in use. The study further found that defective HPCs were not always disposed of and might have been counted as in use.

3.6.2 Collection rates by fraction

Following the WEEE Directive⁵², high pressure cleaners (falling under the category 'Electrical and electronic tools') must be collected at end-of-life and sent to suitable facilities for proper treatment incl. re-use, recovery or recycling. The directive requires that each Member State should comply with set minimum annual collection rates expressed as a percentage of the average weight of electrical and electronic equipment placed on the market in the three preceding years in that Member State (45% from 2016 and 65% from 2019) with a few exemptions.

Eurostat statistics report the Member State data⁵³. No statistics are available specifically for high pressure cleaners but only for the overall category 'Electrical and electronic tools', which contains also many other tools. However, we have not received any evidence for assuming that the collection rates of high pressure cleaners should be different from other electrical and electronic tools.

Table 28 shows the collection rates for 'Electrical and electronic tools' for 2016.

Country	Average EEE put on the market 2013-2015	WEEE collected 2016	Collection rate
	Tonnes/year	Tonnes/year	
Austria	4 496	2 520	56%
Belgium	15 406	4 614	30%
Bulgaria	2 073	2 403	116%
Croatia	2 083	620	30%
Cyprus	392	47	12%
Czechia	14 148	2 598	18%
Denmark	8 898	1 485	17%

Table 28. Calculated collection rate of 'Electrical and electronic tools' in EU, 2016. Data for Italy, Cyprus, Malta and Romania were not available for 2016; instead data for 2015 or 2014 were used.

⁵¹ GFK & Recupel Belgische huishoudens: 1-meting. Confidential.

⁵² https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012L0019&from=EN

⁵³ http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_waselee&lang=en

Country	Average EEE put on the market 2013-2015 Tonnes/year	WEEE collected 2016 Tonnes/year	Collection rate
Estonia	945	319	34%
Finland	9 870	866	9%
France	100 595	17 029	17%
Germany	131 243	43 731	33%
Greece	3 721	117	3%
Hungary	5 354	683	13%
Ireland	3 961	1 229	31%
Italy	34 220	13 787	40%
Latvia	1 619	468	29%
Lithuania	2 248	1 059	47%
Luxembourg	514	301	59%
Malta	2 625	56	2%
Netherlands	13 623	2 743	20%
Poland	46 873	18 047	39%
Portugal	5 123	1 704	33%
Romania	7 598	815	11%
Slovakia	3 828	1 078	28%
Slovenia	1 603	212	13%
Spain	12 428	1 703	14%
Sweden	13 284	3 481	26%
United King- dom	96 409	22 477	23%
Austria	4 496	2 520	56%
Belgium	15 406	4 614	30%
Bulgaria	2 073	2 403	116%
Total	545 178	146 192	27%

The table shows that the average collection rate for 'Electrical and electronic tools' at EU level was just below 30% in 2016 and only six Member States comply with the required level for 2016, 45%.

3.6.3 Second-hand use and second product life

No data was available on second-hand use and second product life. However, a quick internet search showed many used HPCs for sale⁵⁴. Furthermore, a Belgian study⁵⁵ identified that 10% of the HPCs in people's homes are never used.

⁵⁴ <u>https://www.ebay.com/bhp/used-pressure-washer https://www.machineseeker.com/High-pressure-</u> <u>cleaners/ci-286</u>; <u>https://www.gumtree.com/pressure-washers</u>
 ⁵⁵ GFK & Recupel Belgische huishoudens: 1-meting. Confidential.

One manufacturer of professional HPCs informed that the market for reused and remanufactured products or components is mostly focused on professional HPCs due to their higher price and more extensive use. For example, fuel-based hot water HPCs are generally refurbished.

3.6.4 Best practice in sustainable product use

Sustainable product use can minimise the resource impact of HPCs. Important aspects include the following:

- Purchase:
 - Properly identifying the cleaning tasks to be carried out by a HPC. For domestic consumers new to the HPC area, this may require assistance from consumer organisations (magazines, web sites, guidance, etc.), shops, neighbours, etc., while professionals would seek assistance from technical salespeople, suppliers, shops, etc.
 - Identifying the right size, features, technical parameters (e.g. pressure, water flow, cold/hot water, detergent use, weight, noise, independency of water and electricity supply system) and necessary accessories relevant to the cleaning tasks, repair and maintenance availability and consideration of total costs of ownership.
 - Considering alternatives to purchase such as neighbouring or community sharing, rental, leasing etc., if available.
 - Use:
 - Proper training in using the HPC including reading the manufacturer's manual.
 - Using the least environmental damaging cleaning setting, i.e. cold water with no detergent and accessories best suited for the cleaning purpose.
 - Proper preparation of surfaces to be cleaned.
 - Using the HPC only when other cleaning methods such as a water hose are not sufficient or would require larger amounts of water.
 - Proper handling of the HPC after use according to the manufacturer's instruction, e.g. by emptying the pump.
 - Frequent maintenance.
 - End-of-use situation:
 - If the HPC is no longer needed, the owner should consider selling it.
 - End-of-life situation:
 - If the HPC is defective and it is not possible to repair it, it should be disposed of through the public collection scheme or similar complying with the WEEE Directive.

3.7 Local infrastructure

3.7.1 Energy: Reliability, availability and nature

3.7.1.1 Electricity

The power sector is in a state of transition, moving from fossil fuels to renewable energy. The origin of the electricity is a very important factor to consider regarding both the environmental impact of using a HPC and how it may affect consumer behaviour. Within

the EU there are a number of renewable energy targets for 2020 set out in the EU's Renewable Energy Directive⁵⁶. The overall target within the EU is for 20% of its final energy consumption to come from renewable sources. The final energy consumption is the total energy consumed directly by end users, such as households, industry and agriculture. It is the energy which reaches the final consumer's door and excludes that which is used by the energy sector itself⁵⁷. To achieve this goal of 20% from renewable sources, the different EU countries have committed to set their own individual goals, ranging from 10% in Malta to 49% in Sweden. In 2015 the share of renewable energy use in the EU was almost $17\%^{58}$. See also the EU Reference Scenario 2016⁵⁹.

The electricity consumption is a major part of the final energy consumption and the electricity mix is highly relevant for quantifying the environmental impacts of high pressure cleaners at EU level. The electricity mix in 2015 is presented in Figure 22.

Figure 22. Net electricity generation, EU-28 in 2015 (% of total, based on GWh)⁶⁰

Almost half of the electricity generation still originates from combustible fuels (such as natural gas, coal and oil) and renewable energy sources only constitute about 25% of the electricity generation in 2015.

The reliability of the electricity grid could, to some degree, be affected by the transition to a renewable energy system. With more renewable energy in the system new challenges occur, e.g. with excess production of wind energy and the two-directional transfer of energy (e.g. electric cars that can supply electricity to the grid when they are not in use). Renewable energy production can vary greatly from hour to hour and day to day.

Due to technological developments, the reliability of the electricity supply in many EU countries is ensured via the expansion of the electricity grid to distribute renewable energy. The quality of the electricity grid in Europe is considered to be high and among the best in the world. Every year the World Economic Forum releases a Global Energy Architecture Performance Index report. The report ranks the different countries on their ability

⁵⁶ https://ec.europa.eu/energy/en/topics/renewable-energy

 ⁵⁷ http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Final_energy_consumption
 http://ec.europa.eu/eurostat/documents/2995521/7905983/8-14032017-BP-EN.pdf/af8b4671-fb2a-477bb7cf-d9a28cb8beea

⁵⁹ <u>https://ec.europa.eu/energy/sites/ener/files/documents/ref2016_report_final-web.pdf</u> ⁶⁰ http://ec.europa.eu/eurostat/statistics-explained/index.php/File:Net_electricity_generation,_EU-

^{28,}_2015_(%25_of_total,_based_on_GWh)_YB17.png

to deliver secure, affordable, sustainable energy. In recent years European countries have dominated the top spots (see Table 29^{61}).

Country	2017 score	Economic growth and development	Environmental sustainability	Energy access and security
Switzerland	0.80	0.74	0.77	0.88
Norway	0.79	0.67	0.75	0.95
Sweden	0.78	0.63	0.80	0.90
Denmark	0.77	0.69	0.71	0.91
France	0.77	0.62	0.81	0.88
Austria	0.76	0.67	0.74	0.88
Spain	0.75	0.65	0.73	0.87
Colombia	0.75	0.73	0.68	0.83
New Zealand	0.75	0.59	0.75	0.90
Uruguay	0.74	0.69	0.71	0.82

Table 29. Top spots of the global Energy Architecture Performance Index report

3.7.1.2 Diesel, petrol and LPG

The reliability of diesel, petrol and LPG is high. These fuels can be bought at petrol stations or delivered directly to the user. Furthermore, there are many suppliers.

3.7.2 Water

Public water grids are available and reliable in most places. There are however differences in the water quality and in particular the calcium level, which may impact the maintenance and lifetime of the HPCs. This is very region-dependent and EU countries may have areas with very soft (less calcium) and with very hard (much calcium) water.

Many HPCs can use water from an alternative source to tap water, for example rainwater and water from ponds or lakes, if they are equipped with water filters.

Chapter 4 details the issue of water hardness and its influence on lifetime.

3.7.3 Installation and installers

None of the mobile units require installation, just the availability of the needed input of energy and water, i.e. for the HPCs supplied with electricity, a single- or three-phase mains connection with sufficient power capacity, and a water tap unless water from other sources is needed.

Some of the larger stationary HPCs do require installation. Most manufacturers have a supplier and installer network to take care of the installation.

3.7.4 Rentals and sharing arrangements

Due to very low use frequency in households, domestic HPCs are very suited for sharing with family members, neighbours, colleagues, etc. The product can also be rented from

⁶¹ https://www.weforum.org/reports/global-energy-architecture-performance-index-report-2017

several suppliers⁶². This option may also be relevant for professional use, if the need is not on a daily or weekly basis.

However, no major schemes have been identified and we assume that only a marginal proportion of HPCs are rented out under such arrangements.

3.8 Recommendations

3.8.1 Refined product scope

The study team believes that the product scope is suitable with two observations:

- Additional subcategories may be added for battery-driven domestic HPCs and for professional electrically heated hot water HPCs.
- The stationary category is very broad, covering both smaller HPCs without wheels but which still can be moved and permanently installed HPCs. This may make it difficult to have one base case covering all the types and eventually to set requirements for this broad category.

3.8.2 Barriers and opportunities for ecodesign and energy labelling

The energy consumption level is low for domestic HPCs, but this should be seen together with water and detergent consumption which are strongly correlated. Furthermore, as described in the Task 1 report, there is no agreed common cleaning performance test method able to simulate average usages. However, there are individual test methods used by consumer organisations and test laboratories, which can be a starting point for developing an industry standard or a harmonised standard.

⁶² <u>https://www.ebay-kleinanzeigen.de/s-hochdruckreiniger-mieten/k0</u>

4 Task 4: Technologies

4.1 Introduction

4.1.1 Scope of the task

Task 4 contains a general technical analysis of current products on the EU market and provides general inputs for the definition of the base cases for Task 5 as well as the identification of the improvement potential for Task 6. The task incorporates the full range of technical reporting, from a description of the existing products up to BAT (Best Available Technology) and BNAT (Best Not yet Available Technology).

Task 4 presents:

- technical product description of existing products, BAT products and BNAT products;
- production, distribution and end-of-life;
- recommendations for a refined product scope, barriers and opportunities for Ecodesign from a technical perspective including the typical design cycle and appropriate timing of measures.

4.2 Technical product description

This section provides technical descriptions and characteristics of existing HPC units, their individual components and technical analyses of energy and resource consumption (energy, water, fuel and detergents). Moreover, noise production and weight information of current products on the market are presented based on the product scope as defined in Task 1. The technical description includes Best Available Technologies (BAT) for reduced resource consumption and Best Not yet Available Technologies (BNAT).

4.2.1 Existing products

4.2.1.1 Technical description of the HPC categories

Domestic electricity-driven HPCs

HPCs aimed at domestic use are primarily segmented by power and pressure. Each manufacturer typically offers a range of models geared towards a variety of defined cleaning tasks, also differentiated via accessories delivered with the products for specific purposes. Some manufacturers aim to provide an indication of relative cleaning performance in the form of an cleaned area per hour. More details about the main parameters of domestic cold water HPCs are presented in Table 30.

Table 30. Typical main parameters for domestic cold water electricity-driven HPCs

Parameter	Parameter value range	Comments
Power	1200-3000 W	Rated power but usually just
		stated as unit 'power'
Pressure	9-18 MPa	Stated maximum or working
		pressure
Flow rate	4-9 l/min (240-540 l/h)	Stated maximum flow rate
Weight	2-18 kg	Can be stated with or without
		accessories
Fixed jet	Standard	Entry-level products often pro-
		vide only one fixed nozzle as
		standard
Variable fan jet	Standard/optional	Approx. 70% of the models of-
		fer as standard
Rotating jet	Standard/optional	Approx. 70% of the models of-
		fer as standard

For domestic hot water HPCs, only one model was found on the market, whose technical specifications are shown in Table 31.

Table 31.	Parameters	for	domestic	hot	water	electric	itv-driven	HPCs
	i ai ai i i cecei o		aonneoere		macer	cicceire	arey arrear	111 00

Parameter	Parameter value
Power	2 000 W
Pressure	12 MPa
Flow rate	7.5 l/min (450 l/h)
Weight	55 kg
Temperature	90 °C
Heating oil consumption	2.45 kg/h

Professional HPCs - general description

Professional HPCs are also primarily segmented by power and pressure. For upright twowheeled models, there is some crossover with the power and pressure range addressed by high-performance domestic models. However, construction and choice of materials and components reflect the high-duty usage and longer operating time, durability and lifetime of professional products together with reducing user fatigue, for example reduced kickback, anti-twist mechanisms and improved controls and for some models specialised applications, e.g. needing very high water pressure and flow rates.

Typical design changes compared to domestic models include the following:

• Pump design – this is generally of the Triplex design (see next section), crankshaft-driven and may incorporate higher quality and better wear-characteristic materials such as ceramic pistons. The cylinder head will typically be made of brass.

- Low-speed motors with improved cooling and more advanced controls (including improved pressure relief) to extend life and address increased duty requirements.
- Usability improvements including integral high-pressure hose reels and longer hoses for storage and to eliminate hose kinking. These may incorporate swivel joints to improve handling.
- Use of larger and stronger wheels on two-wheeled models or the provision of three or four wheels on horizontal models to improve manoeuvrability.
- More robust lances and cleaning tools with improvements including swivel joints and reduced pressure requirements on trigger for extended periods of use and reducing operator fatigue.
- Unions and connections for fittings and hoses are generally brass or mild steel, compared with the plastic fittings used on domestic models.
- Improvements to operating flow (reduced vibration) and reduced kickback when operating the trigger to reduce operator fatigue.

Professional cold water electricity single/three-phase HPCs

Single-phase professional cold water HPCs are similar to domestic models but with a longer operating time and higher weight due to being built for daily use. More details about the main parameters of professional cold water HPCs are gathered in Table 32.

Parameter	Parameter value range	Comments
Power	1-phase: 2 800-3 000 W 3-phase: 7 000-10 000 W	Rated power but usually just stated as unit 'power'
Pressure	1-phase: 14-18 MPa 3-phase: 20 MPa	Stated maximum or working pressure
Flow rate	1-phase: 9-20 l/min (540- 1 200 l/h) 3-phase: 15-20 l/min (900- 1 200 l/h)	Stated maximum flow rate
Operating time	1-phase: 1-2 h/day 3-phase: 4+ h/day	Recommended maximum du- ration of use per day
Weight	20-80 kg	Can be stated with or without accessories
Variable fan jet	Standard/optional	Approx. 70% offer as standard
Rotating jet	Standard/optional	Approx. 70% offer as standard

Table 32. Typical main parameters for professional cold water electricity-driven single/three-phaseHPCs

Professional cold water combustion-engine-driven HPCs

This category is different to the previous category as these HPCs have a fuel-driven combustion engine (petrol or diesel) and a fuel tank instead of an electric motor, enabling cleaning without access to electricity and enabling higher maximum pressure. More details about the main parameters of these HPCs are gathered in Table 33.

Table 33. Typical main parameters for professional cold water combustion-engine-driven HPCs

Parameter	Parameter value range	Comment
Power (engine)	4 000-10 000 W (engine)	Rated power but usually
		just stated as unit 'power'
Pressure	16-24 MPa	Stated maximum or work-

		ing pressure
Flow rate	10-15 l/min (600-900 l/h)	Stated maximum flow rate
Fuel source	Petrol or diesel	Depends on the specific motor
Fuel consumption	1-8 l/h	Petrol or diesel
Operating time	3-4 h/day	Recommended maximum duration of use per day
Weight	27–110 kg	Can be stated with or with- out accessories
Continuously variable flow and pressure	Standard	

Professional hot water single/three-phase HPCs with fuel heater

The category is based on the professional cold water machine, to which a fuel heater with a burner is added. Some HPCs may also deliver steam. Compact units are upright two-wheeled models, normally single-phase, with a separate fuel tank for fuel. The provision of hot water means that lower maximum pressures often are specified for this type of unit, though hot water models with high pressure are also available. For higher flow rate upright models, the power ratings increase above 3 kW and a three-phase 230 V supply is required. More details about the main parameters of these HPCs are gathered in Table 34.

Table 34. Typical main parameters for professional hot water single/three-phase HPCs with fuel heater

Parameter	Parameter value range	Comment		
Power	1-phase: 2 000-3 600 W 3-phase: 3 800-15 000 W	Rated power but usually just stated as unit 'power'		
Pressure	1-phase: 11-18 MPa 3-phase: 20 MPa	Stated maximum or work- ing pressure		
Flow rate	1-phase: 9-20 l/m (540-1 200 l/h) 3-phase: 15-20 l/m (900-1 200 l/h)	Stated maximum flow rate		
Temperature	60-150 °C	Of the water/steam leaving the nozzle		
Heating fuel consumption	2-15 kg/h	Heating oil or gas		
Operating time	3-4 h/day	Recommended maximum duration of use per day		
Weight	60-200 kg	Can be stated with or with- out accessories		
Variable fan jet	Standard/optional	Approx. 70% offer as standard		
Rotating jet	Standard/optional	Approx. 70% offer as standard		

Professional hot water three-phase HPCs with electric heater

The category is based on the professional cold water machine, to which an electric heater is added. The nameplate power is much higher and only three-phase connection is possible due to the higher electric load for the water heating. More details about the main parameters of these HPCs are gathered in Table 35.

 $\label{eq:table 35.} Typical main parameters for professional hot water three-phase HPCs with electric heater$

Parameter	Parameter value range	Comment		
Power	18 000-42 000 W	Rated power but usually just stated as unit 'power'		
Pressure	15-20 MPa	Stated maximum or work- ing pressure		
Flow rate	9-15 l/m (540-900 l/h)	Stated maximum flow rate		
Temperature	60-98 °C	Of the water leaving the nozzle		
Operating time	3-4 h/day	Recommended maximum duration of use per day		
Weight	120 kg	Can be stated with or with- out accessories		
Variable fan jet	Standard/optional	Approx. 70% offer as standard		
Rotating jet	Standard/optional	Approx. 70% offer as standard		

Professional hot water combustion-engine-driven HPCs with fuel heater

This model corresponds to the cold water combustion engine category, to which a fuel heater with a burner is added. There are typically two fuel tanks added, one for the engine and one for the burner. More details about the main parameters of these HPCs are gathered in Table 36.

Table 36. Typical main parameters for professional hot water combustion-engine-driven HPCs with fuel heater

Parameter	Parameter value range	Comment		
Power	4 500-7 500 W	Rated power but usually just stated as unit 'power'		
Pressure	14-17 MPa	Stated maximum or work- ing pressure		
Flow rate	10-15 l/m (600-900 l/h)	Stated maximum flow rate		
Fuel source	Petrol or diesel	For the engine		
Fuel consumption	1-8 l/h	Petrol or diesel		
Heating fuel con- sumption	2.8-4.5 kg/h	Heating oil, diesel, bio- diesel		
Temperature	60-98 °C	Of the water leaving the nozzle		
Operating time	3-4 h/day	Recommended maximum duration of use per day		
Weight	100-150 kg	Can be stated with or with- out accessories		
Continuously varia- ble flow and pressure	Standard			

Stationary cold water HPCs

The stationary HPC is a special category of professional units, which are typically larger and can operate more hours a day. More details about the main parameters of these HPCs are gathered in Table 37.

Parameter	Parameter value range	Comments
Power	1-phase: 3 000 W 3-phase: 4 000-55 000 W	Rated power but usually just stated as unit 'power'
Pressure	1-phase: 20-22 MPa 3-phase: 15-27 MPa	Stated maximum or work- ing pressure
Flow rate	1-phase: 10 l/m (600 l/h) 3-phase: 10-150 l/m (720- 9 000 l/h)	Stated maximum flow rate
Operating time	1-phase: 2-3 h/day 3-phase: 5-7 h/day	Recommended maximum duration of use per day
Weight 20-500 kg		Can be stated with or with- out accessories

Table 37. Typical main parameters for stationary cold water HPCs

Stationary hot water HPCs with fuel heater

This category is like the cold water stationary models just with a water heater added. The models are three-phase types. See Table 38.

Parameter	Parameter value range	Comments		
Power	6 000-10 000 W	Rated power but usually just stated as unit 'power'		
Pressure	14-18 MPa	Stated maximum or work- ing pressure		
Flow rate	10-20 l/m (600-1200 l/h)	Stated maximum flow rate		
Heating fuel consumption	2.8-4.5 kg/h	Heating oil, diesel, bio- diesel		
Operating time	5-7 h/day	Recommended maximum duration of use per day		
Weight 140-400 kg		Can be stated with or with- out accessories		

Table 38.	Typical main	parameters fo	r stationary	hot v	water HP	Cs with	fuel heater
10010 001	i ypicai mam	purumeters io	n Scacionary	1100	nucci ili	CO WICH	ruci neutei

4.2.1.2 Main components

Overview

Figure 23 shows the main components of a HPC in a schematic way. The components are further detailed in the following paragraphs.

The on/off switch is mounted on the main body of the HPC. The on/off switch switches the main motor and pump with associated electronics on/off. Special care is taken in the design and construction of the HPC to ensure the effective sealing and safety of this switch, both internally and externally, to prevent risks due to water ingress.

Many manufacturers incorporate a second pressure (or flow switch) in series with the on/off switch so that the pump will only run when the lance trigger is activated.

Figure 24. Example of a series connected pressure switch

⁶³ <u>https://www.explainthatstuff.com/pressurewashers.html</u>

Motor system

The motor or engine is designed to drive the water pump. The electric motor is often water-cooled but smaller motors may also be air-cooled by a fan housed at the end of the motor shaft. The fuel engine is most often air-cooled.

Electric motors are commonly induction-based. Induction motors are also known as asynchronous motors because the motor operates at a speed lower than the synchronous speed. The synchronous speed refers to the frequency of the rotating magnetic field in the stator. The stator is the fixed part of the motor and the rotor is the moving part. The AC supply to the motor creates a moving magnetic field (MMF). The number of poles and the frequency of the supply determine the synchronous speed by:

 $Ns = (120 \times f) / P$

where,

f = frequency of the supply;

P = number of poles.

The conductors in the rotor are short-circuited and the current that flows in the rotor is produced as induced electromagnetic force (EMF) in accordance with Faraday's law of electromagnetic induction. The rotor will attempt to match the speed of the Motor Magnetic Field (MMF) and will operate at a lower speed than the synchronous speed described by a factor called slip:

% slip, $s = ((Ns - N)/Ns) \times 100$

Slip is typically 3-5% at full load.

The simplicity of the induction motor makes it a maintenance-free item as there are no brushes. Induction motors are not self-starting as there must be a difference in flux and a start or start-run capacitor is incorporated to achieve this. The capacitor is normally housed in the same special housing that protects the on/off switch from water ingress.

The motor/pump assembly is normally an integral unit with the pump being driven directly. The pump and motor are typically bolted together. See motor details in Figure 25. **Figure 25.** (a) Electric motor/pump as an integral unit, and (b) another view with the motor case, switch, start capacitor, etc. removed

NB: The bottom part of the unit is the motor; the cooling fan for the motor has been removed. The pump section sits directly on top of the motor.

In the case of combustion-engine-driven machines, the engine may be two-stroke or four-stroke in the case of higher power or higher pressure professional units. HPC Original Equipment Manufacturers (OEMs) will often source industry standard diesel- or petrol-based engines from manufacturers such as Honda, Briggs and Stratton, Yanmar and others. Engines may be manual, pull-start or full electronic starting.

Figure 26. Details of a typical air-cooled electric motor

NB: The engine assembly comprises air filtration, choke, ignition, fuel tank and exhaust system. The pump is normally driven directly by the main shaft of the engine.

Figure 27. Typical shaft-driven arrangement

NB: An example of a combustion engine, where the pump is driven directly by the main shaft of the engine. In some configurations the pump may be driven indirectly via a belt.

Water pump

The water pump is the core component of the pressure cleaner. Driven by the motor, the pump draws in water from the supply side, pressurises the water and delivers water at the outlet at high pressure. The pump normally operates on a reciprocating basis; the motor rotates but the pump provides a reciprocating or back and forwards motion to both draw in supply water and pump out the high pressure water.

This may be achieved by a number of pistons located in the pump cylinder head, which are operated in sequence by an offset/eccentric (Swash Plate or Wobble Plate) plate that is driven by the motor shaft. The pistons operate in sequence to enable mains water to be drawn in via a suction valve and water that is already within the pump chamber(s) to be ejected via the pressure valve. The pistons are spring-loaded and pump efficiency is relatively low (about 70%) as the operation requires pushing against both the spring and the water. The pumps are self-priming and can run dry.

They have several moving parts and are generally not cheap to repair. They have the advantage of a relatively long life (200-800 hours, the professional ones at the higher end). For domestic products, replacement pumps often cost as much as a complete replacement HPC, while, for professional ones, pumps will be replaced approximately every 500 hours.

Water hardness also affects the life of a pump; mineral deposits in the water can lead to increased wear on moving parts. The water hardness is measured in terms of calcium carbonate per unit volume. There is no UK or EU formal standard for the hardness of drinking water, but the following scale is commonly used in the UK:

- soft water contains less than 100 mg of calcium carbonate per litre;
- moderately hard water contains between 100 mg and 200 mg of calcium carbonate per litre;
- hard water between 200 mg and 300 mg of calcium carbonate per litre;
- very hard water contains more than 300 mg of calcium carbonate per litre.

However, the American Society of Agricultural Engineers and the Water Quality Association⁶⁴ sets the following classification:

⁶⁴ https://www.wqa.org/learn-about-water/perceptible-issues/scale-deposits

- Soft: <17.0 mg of calcium carbonate per litre.
- Slightly Hard: 17.1-60 mg of calcium carbonate per litre.
- Moderately Hard: 60-120 mg of calcium carbonate per litre.
- Hard: 120-180 mg of calcium carbonate per litre.
- Very Hard: >180 mg of calcium carbonate per litre .

Whilst the effect of hard water is greater when the water is directly heated, limescale build-up will affect pump valves and chambers, leading to wear and potential loss of pressure over time. Water passing through the pump is subject to heating through friction and other losses and this results in the build-up of limescale deposits. HPCs used in hard water areas may require regular descaling or the use of water-softening products in the supply water to the HPC.

The whole pump may be referred to as the 'cylinder head' in some products, reflecting the pump design and the use of pistons. See illustration in Figure 28.

Figure 28. Water pump with a manifold assembly that houses the chemical injector, a pressure check valve (unloader valve) and the inlet and outlet tubes

The rate at which the pump can deliver the high-pressure water jet is a key performance factor determining the design of the pump. In addition to drawing in the supply water, the pump may also draw in detergent from an internal or external supply bottle and mix this with the water prior to delivery at high pressure. In some products, the inlet water flows around a water jacket that surrounds the motor. This provides cooling for the motor and reduces noise.

Three types of pump technology are employed as presented in Figure 29 to Figure 31. All are displacement types and operate on a reciprocating basis.
Figure 29. The Wobble-type pump

The Wobble (or moving Swash plate) type is most commonly used in domestic HPC products. In this type of pump, the rotary action of the input shaft, which is driven by the motor, is converted into a reciprocating action. Spring-loaded pistons mounted on fixed cylinders are activated by the wobble plate on every rotation. This type of pump is simple and has few components.

Figure 30. The axial-type pump

The axial pump is driven directly from the rotating shaft of the motor and the angle of the swash plate may be adjusted to set the flow rate. This is a more complex pump construction and the cylinder seal is on the piston head, causing wear on each operation. Axial pumps are typically used in professional HPCs, where a higher usage pattern is expected. Serviceability and operational life are important considerations and enhancements such as the use of ceramic pistons in pumps are common. The lifetime is typically 500-800 hours (the cost of such a pump starts from EUR 80⁶⁵, at 2017 prices).

⁶⁵ <u>https://bepressure.co.uk/replacement-pumps</u>

Figure 31: Typical Triplex pump

The Triplex pump is typically used in professional HPC applications and utilises three crankshaft-operated pistons to draw in and pump out water on each stroke. It offers much higher efficiency (typically 90%) and has a lifetime of thousands of hours. This type of pump is also maintainable – it typically runs cooler than axial types due to the larger area and improved cooling. The pump can be used for very high pressure applications. The Triplex pump typically includes the drive housing to the motor. It is generally driven directly by the motor or engine but belt-driven arrangements are also deployed. The typical cost of a triplex pump⁶⁶ starts from EUR 200 in 2017 prices.

Built-in hot water heater

Cleaning using hot water is generally considered to improve cleaning efficiency by 30-35%⁶⁷ and for greasy or oil cleaning applications, including automotive, hot water is essential for a satisfactory performance. A heated surface will also dry more quickly. Hot water HPCs – supplied with cold mains water - contain a fuel oil burner or electric heater and a hot water tank for storing hot water or use instantaneous water heaters. These are generally included in industrial or professional HPCs. Figure 32 presents typical examples of hot water HPCs with a diesel burner and electric boiler.

⁶⁶ <u>https://bepressure.co.uk/replacement-pumps</u>

 $^{^{67}} https://www.kaercher.com/uk/professional/pressure-washers/benefits-of-hot-water-high-pressure-cleaners.html$

Figure 32. Hot water HPCs with diesel burner (left) and with electric boiler (right)

NB: Both have an electrically driven motor-pump assembly.

Electrically heated hot water HPCs are for use in applications where exhaust emissions would be unacceptable (indoor areas, food processing, hospitals, etc.) This type of unit includes a high-power instantaneous water heater. Power ratings for the heater assembly are typically in the range 12-36 kW, requiring a three-phase connection. The electric boiler offers the potential for better temperature control and low thermal losses with units typically offering reduced or eco-mode settings for operation at fixed 60 °C operation or, for intense cleaning tasks, up to 85 °C.

A range of controls including for flow sensing and water level are included to prevent damage in the case of a low flow or a low water level in the boiler and temperature control settings that match the outlet temperature to the cleaning task. Figure **33** shows a typical heating coil and burner assembly.

Figure 33. Typical heating coil (left) and burner assembly (right) for a hot water HPC⁶⁸

⁶⁸ <u>www.nilfisk.com/en-gb/features/Pages/EcoPower-Boilers.aspx</u>

In all cases, regardless of the heating source, high-pressure water is pumped through the coil prior to heating. Given that the water is heated on the high-pressure side, there are important considerations for operating heated high pressure cleaners in terms of startup, bypass and shutdown sequences. For a professional hot water HPC, it is normal practice to start the unit up delivering cold water before activating the burner. This ensures that water is flowing continuously through the coil prior to heating and the maximum operating temperature is then progressively increased to the operating temperature as the coil is heated. During bypass (when the trigger gun is deactivated), water is recirculated via the pump to the low-pressure side of the pump via the unloader valve. Since the hot water raises the temperature of the pump there are restrictions on how long the HPC should operate in this mode. This time should be minimised by the operator and some machines have auto-shutdown to prevent damage.

Similarly, on completion of the cleaning task, the heating coil should be cooled by passing water through the system with the heating source off. This maximises the lifetime of the heating coil and seals and reduces the risk of thermal shock.

By heating the delivery water in the coil (via either the burner or in the case of an electrically heated unit via a heater and heating water tank), the assembly operates as an instantaneous water heater. Where a burner is used as the heating source, the flame from the burner passes through the centre of the coil to heat the high pressure water contained within the coil. With electrical heating, the coil may be mounted in a water tank in which the hot water is electrically heated. Heat is transferred from the hot water tank to the high-pressure water in the coil.

Common burner control and protection mechanisms are incorporated and include a flame sensor (to ensure that fuel is only injected when there is a flame present), flow sensing (to ensure that the burner can only be operated when water is in the coil), low fuel controls and exit/exhaust temperature monitoring to prevent excess coil temperature.

Hot water pressure cleaners may suffer from a build-up of limescale mineral deposits on hot water boiler coils. The main part of this deposit is calcium carbonate and magnesium. Hard water contains calcium particles that are more readily soluble in hot water than cold. The effect of hard water is greater when the water is directly heated. Limescale builds up in the heater and scale is a poor heat conductor, resulting in the water being insulated from the heating coil's heat source. This affects water heating efficiency, maintaining hot water production, and can restrict water flow or pressure, resulting in a heavier strain on other HPC components, blockage of jets or similar failures.

Limescale prevention is a major consideration for extending the life of a heating coil. Limescale can reduce the efficiency of a heating coil by up to 50% (depending on the thickness of limescale deposit) and has a similar reduction effect on the lifetime. Hot water HPCs may therefore include dosing systems for hard water reduction and limescale control.

Some machines are fitted with water softener systems. This is a dosing system that operates when the machine is used in hot mode by means of a dosing pump controlled by a timer circuit. The water softener is poured into a holding tank - a typical capacity is 5 I. This drips the softener into the machine's header tank, and mixes in the water that is fed into the pump, additionally extending the life of the pump by helping to prevent valves from sticking. There are professional HPC units with a built in limescale remover available in the market. Manufacturers offer limescale reduction chemicals and details including Safety Data Sheets are available via the manufacturer's website.

In order to inform consumers and professionals of the burner efficiency improvements/environmental performance, the cleaning machines association EUnited has created a High Pressure Cleaner burner efficiency label⁶⁹. This is a visual

⁶⁹ <u>https://www.eu-nited.net/cleaning/labels/hpc-label/index.html</u>

endorsement that the oil-heated burner fitted to the high pressure cleaner meets the scheme's requirements for thermal exhaust loss and CO and dust emissions.

The acceptable limits of thermal losses per net power of the heater, CO emissions and smoke number are as follows:

- Net power of heater (kW) \geq 4 and \leq 25: max. thermal loss qA = 11%.
- Net power of heater (kW) > 25 and \leq 50: max. thermal loss qA = 10%.
- Net power of heater (kW) > 50: max. thermal loss qA = 9%.
- CO emission: max. 75 ppm.
- Smoke number: max. 1 (Bacharach scale).

These numbers can be compared with German emission criteria in the occupational regulations⁷⁰, e.g. the maximum CO emission from diesel exhaust is 30 ppm. In this specific criterion, the German emissions criteria is much stricter than the EUnited label criteria.

Water inlet and high-pressure hose

The water inlet is through a hose that connects the pressure washer to the main water supply. This is normally a mains-fed water supply but other sources including a water butt, tank or lake may be possible for certain models. The minimum inlet pressure specification for the HPC specifies the requirement, and models constructed using a self-priming water pump or special adaptor hoses are required for non-mains-fed applications.

The hose connects the HPC to the cleaning attachment or nozzle. The high-pressure hose is reinforced with wire mesh and normally has two or more layers of high-density plastic. This is a safety-critical component and the hose is rated with a significant safety margin over the maximum pressure rating of the HPC. Hoses are typically rated with a safety factor of 3. The inlet includes a simple filter to stop dirt and debris entering the washer; debris within the water supply could cause damage or excess wear to the pump impellor or be ejected under high pressure.

On domestic HPCs, the tap connection fitting is a standard push-fit hose-type connector. There is generally a requirement to ensure that back-siphoning of water into the drinking water supply cannot occur and a separator or non-return valve may be specified as a requirement for this connection.

The manufacturer specifies the inlet pressure and temperature requirements, the minimum length and diameter or hose required and, for non-mains-fed applications, the special adaptor hose. The adaptor hose normally comprises an integral filter and one-way valve at one end and a standard hose connection at the other. The attachment end of the hose has an auto-stop valve and a twist-lock or bayonet-type fitting into which various cleaning attachments may be fitted.

Nozzle and cleaning attachment

The nozzle creates the spray jet. Cheaper pressure washers usually come with just one nozzle whilst more expensive models may come with more nozzles that provide different strengths and shapes of jet spray. The nozzle types can be divided into the following three main types:

- Fixed jet: The shape and pressure of this jet cannot be adjusted.
- Variable fan jet: The nozzle has different positions that allow the user to vary the angle and pressure of the spray.

⁷⁰ <u>https://www.dieselnet.com/standards/de/ohs.php</u>

• Rotating jet: A powerful, focused jet spins as it leaves the nozzle, providing very strong cleaning power.

Dependent on the type of cleaning task, the HPC may be fitted with a simple trigger gun; this is essentially just a manually operated valve that only lets water through when the handle is squeezed. Different manually operated lances are available with straight and angled heads and with adjustments to control the mix of detergent and water.

Powered accessories include attachments intended for cleaning surfaces such as wooden decks and patios or rotating brushes. Powered attachments are driven by the force of the water flowing through them.

The trigger on the gun normally operates a pressure switch that forms part of the motor/pump assembly that activates the pump when the trigger is squeezed. While the trigger is in the off position, the pressure builds up in the pump and the switch activates to disable the pump.

Detergent hose and tank

Appliances may include a means of adding detergent to the high-pressure water supply. The mix of detergent with the water may be controlled in the tank or via the attachment.

Detergent dosage requirements depend on the specific detergent to be used and are usually indicated in the use instructions. There are different ways that the detergent can be added to the water:

- A container integrated in the HPC main body, where the detergent is sucked through a tube and injected into the water.
- A separate container placed beside the HPC, where the detergent is sucked and injected into the water.
- A dedicated spraying nozzle with a small detergent container attached underneath; it is to be used only when detergent should be added.

Professional HPCs typically have integrated detergent containers, while domestic HPCs may typically have integrated or separate containers, or a dedicated spraying nozzle with a container attached. Domestic HPCs often have a simple dosage system where regulation is not possible or which does not even allow the possibility to stop adding detergent except by removing the detergent tube or emptying the container.

The dispensing control on most machines is very limited and detergent may be added either upstream or downstream of the pump. The most common is upstream and operates on a simple siphon injector basis. The detergent is applied in a low-pressure mode.

The control is typically by means of a simple flow restriction at the tank end and the nozzle then has a detergent position which ensures that detergent is supplied. Some detergents are intended to be used in an 'as supplied' form via a pick-up tube on the HPC, some require that the undiluted detergent is added to the integrated tank and others require dilution before use. Detergent usage or dosage is infrequently specified and rarely for domestic appliances.

Certain products with electronic controls offer a more precise 'visual' control of key parameters including detergent use – these normally allow the setting to be adjusted up or down (+/-) but do not allow the dose to be set by value. Data provided by a stakeholder shows a typical detergent 'mix ratio with cleaning agent' of 0.3 l/min for a range of machines with maximum flow rates of 7-8.3 l/min. This gives a typical dosage ratio of >20:1.

Water hardness may limit the effectiveness of detergents. Soap and detergents have an ionic nature and, when they dissolve in hard water, soap molecules react with the suspended calcium ions. This limits the formation of lather and may result in poor foaming or scum which renders the detergent ineffective. Consequently, cleaning performance is adversely affected, and more detergent is required.

Safety components

These form an integral part of the HPC design and are included to ensure safe operation of the appliance and to protect the appliance in the case of misuse or a fault.

The safety components include the following:

- Unloader valve: A device which allows the water to circulate within the appliance whilst the motor is still running but the outlet of the appliance is closed, e.g. the lance trigger is not operated. Circulating water will heat up over time and a pressure vent or temperature vent may release the heat to the atmosphere (normally at ground level), allowing cooler water to be drawn in and recirculated. The unloader valve is an in-line valve used in higher pressure models (generally 17 MPa up). This valve is often spring-adjustable to set the maximum pressure and the valve has a dual function it regulates the outlet pressure and also acts as a pressure relief.
- Flow switches: These sense and protect in the event of no flow (e.g. to prevent the pump running dry).
- Pressure relief: They prevent the appliance from excess pressure.
- Temperature sensors: An appliance that provides water heating will include sensors to both control the temperature and provide protection. It is typically a thermal switch and takes the form of a limiter that would activate a contact to isolate the heater.
- Motor protection switch: Electric motors include protection devices. They may be fuses, self-resetting thermal switches or temperature sensors (thermistors, thermocouples or PT100) embedded in the windings which are monitored by a control system.
- Operator Presence Control (OPC): As a safety feature, most HPCs have an OPC, which ensures that water is not pressurised when the lance is not operated. It does not mean that the machine is fully shut off.

Mains cable

Mains-operated electric motor products are supplied with a fixed mains cable secured by a suitable cable entry gland to prevent water ingress and to provide tension relief on the cable during movement. Smaller products are typically supplied with a 5-metre cable while larger products can be supplied with a 10-metre cable.

Casing and wheels

The casing of products used on domestic HPCs is normally plastic and provides a balance between durability and weight. Wheels are provided on heavier units. These are normally solid wheels, but combustion-based units feature pneumatic tyres.

4.2.1.3 Analysis of main performance parameters

The study team has collected a number of analyses of the main performance parameters, aiming at assessing the resource consumption for the products on the market and reporting the efficiency figures.

Power load versus maximum water flow rate

The above analyses are repeated where the energy consumption is compared with the maximum flow rate instead of the working pressure. Figure 34 presents the power drawn versus the water flow for domestic (excluding battery-driven models) and professional HPCs, including both electric motors and combustion engines, but excluding stationary units which have different characteristics.

Figure 34. Power load vs. maximum water flow (I/hour) for professional HPCs (excluding stationary HPCs and deducting power for electrically heated hot water HPCs) based on the technical specifications

NB: HPCs with an electric motor and with a combustion motor are shown separately. Trend lines are added for each type of motor.

The power load is calculated from the nameplate power reduced by 10% because the maximum connected load (nameplate power) is typically higher during start-up than continuous operation. The reduction, 10%, is approximate and based on an average reduction from a test study conducted by a stakeholder. An average value of 3.9 Wh/l is calculated for domestic HPCs; 5.8 Wh/l for professional electric HPCs; and 8.6 Wh/l for professional combustion-engine-driven HPCs.

However, Figure 34 does not take the pressure level and possible other features into account.

Combined working pressure, water flow and rated power

In the previous sections, the water flow correlation with input power has been analysed. Both water flow and pressure are important for a good cleaning result: The water pressure loosens the dirt from the surface, while the water flow removes the dirt after it has been loosened. Therefore, a single performance parameter which includes both of them is proposed. Several internet resources^{71,72,73,74} report a simple combination by multiplying water pressure and water flow – by sources called "cleaning units". In this report we define this index as the Cleaning Power Index (CPI) as it reflects the performance of its units in terms of maximum water pressure and maximum water flow and can be calculated as follows:

CPI = maximum water flow x maximum flow pressure (litres*MPa*minute⁻¹)

Figure 35 presents the relationship between CPI and the input power of a HPC unit (domestic and professional).

⁷¹ https://www.goodway.com/hvac-blog/2011/03/flow-rate-is-key-when-choosing-a-pressure-washer/

⁷² http://www.rentalmanagementmag.com/Art/tabid/232/ArticleId/17838

⁷³ https://www.thoroughclean.com.au/factors-influence-high-pressure-cleaning-constitutes-cleaning-power/

⁷⁴ https://simpsoncleaning.com/tips/2016/psi-vs-gpm-what-matters-most/

Figure 35. Input power versus CPI (maximum water flow x maximum water pressure) for domestic and professional HPCs based on the technical specifications

The following conclusions can be drawn:

 There is a clear correlation between CPI and input power; they correlate very well (R²⁼0.988). The relation is:

Input power = $0.022 \times CPI + 0.0019$

• The red markers that deviate too much from the trend, regards hot water HPC units with an electric heating boiler, and thus a large fraction of the input power is intended for heating water.

The study team has analysed the data further by calculating an energy efficiency number as the power load divided by flow multiplied by pressure and normalising it, resulting in an EEI, Energy Efficiency Index for domestic and professional HPCs . The normalisation takes place by dividing each energy efficiency number by the lowest number for each category. The lower the index, the less power is needed to be delivered to the cleaning unit (pressure x flow). The resulting EEI vs power loads are shown in Figure 36 for domestic and professional HPCs.

Figure 36. EEI (Energy Efficiency Index) vs. power load for professional HPCs (excluding stationary HPCs and deducting power for electric heated hot water HPCs) based on the technical specifications

NB: HPCs with electric motor and with combustion motor are shown separately.

The figures show only limited correlation with power loads, and mainly for the electric motors, with a down-sloping tendency in EEI with increasing power loads. For combustion motors, there are only 13 data points and therefore much more uncertainty so no conclusion is drawn here.

Main parameters and real water and energy consumption

The study team has assessed the test results of real water and energy consumption of the domestic HPCs. In order to allow for a fair comparison, the HPCs selected performed to a minimum cleaning quality according to the in-house test designed by the laboratory. This filter resulted in a subset of 22 HPCs out of 43. The test results are provided for standard (fixed) and rotating nozzles. Only the results for standard (fixed) nozzles have been included. Figure 37 shows the energy and water consumption of the HPCs expressed as a percentage of deviation from the average. Negative values mean that the unit consumes less water or energy than the average. The order of the results is based on the energy performance, from less (left) to more (right) energy consumption than the average.

Figure 37. Energy and water consumption of 22 HPCs, expressed as % deviation from the average

As can be observed, in general, water and energy consumption are correlated, meaning that in most cases the units perform better or worse in both energy and water, and just the two HPCs that are closer to the average behave slightly differently. Of the group on the left, 7 out of 10 consume at least 20% less water and energy, and 2 reach the best performance (more than 40% less energy and water consumption). Of the group on the right, 8 out of 12 consume at least 20% more water, while the number of units that consume a minimum of 20% more energy is 5. However, the worst performing unit consumes above 50% more energy and 40% more water.

Figure 38 gathers the values of energy and water consumption with the rated input power (as a percentage of deviation from the average). Of the group of HPCs that consume less than 20%, all but one have larger input power (7% larger). The HPCs that consume more water have lower and higher input power, without any apparent pattern.

Figure 38. Energy and water consumption and rated input power of 22 HPCs, expressed as % deviation from the average

Figure 39 shows the values of energy and water consumption with the rated pump pressure (as a percentage of deviation from the average). The profile is very similar to input power, except that the variations are larger. This is the result of the different pump efficiencies of the units.

Figure 40 shows the values of energy and water consumption with the rated maximum flow (as a percentage of deviation from the average). The profile is very similar to input power, except that the variations are larger. All the units that consume 20% less energy and water show a rated maximum flow at least 8% higher. On the opposite side, 5 out of 8 units that consume 20% more water achieve lower flows, though the rated flows of the worst ones are very close to the average.

Figure 41 shows the capability of units to vary their power at maximum and minimum spray. Of the 10 best performing HPCs, 7 are able to vary their power up to 50%, while among the worst performers there are units both capable and not capable of power variation.

The energy and water consumption have been evaluated in relation to the EEI defined in above. For this purpose, the following indexes have been defined:

- EEI nominal: This corresponds to the EEI shown in Figure 14.
- EEI measured: This is a normalised index based on the measured power load divided by the measured water flow and measured force.
- Water consumption normalised: This is a normalised index of water consumption for cleaning 1 m^2 of pavement including only test points with sufficiently high quality (at least 4 on a scale of 0.5-5.5).
- Energy consumption normalised: This is a normalised index of energy consumption for cleaning 1 m^2 pavement including only test points with sufficiently high quality (at least 4 on a scale of 0.5-5.5).

Figure 42 shows a certain correlation between the EEI measured and the water consumption. Due to it being a real-life test for the measured indices, there are uncertainties involved even though the tests were performed by experts and done twice for the water and energy consumption (results averaged).

Figure 42. Water consumption versus EEI nominal and measured

As can be observed in Figure 43, the correlation between EEI and energy consumption is much weaker. Apart from the uncertainties related to real-life tests mentioned above, the energy consumption is calculated by multiplying the time by the measured power at maximum spray.

Figure 43. Energy consumption versus EEI nominal and measured

The correlation between cleaning time and EEI is better as Figure 44 shows, which suggests that the variation of power over the test cycle plays a role.

Figure 44: Cleaning time versus EEI nominal and measured

Finally, the results of cleaning units and water and energy consumption normalised are displayed in Figure 45 for standard nozzles and rotating nozzles. The size of the bubbles is related to the cleaning units.

Figure 45. Energy versus water consumption normalised for standard nozzles and rotating nozzles

As can be observed, the rotating nozzle setting consumes less energy and water per m^2 compared to the standard nozzle setting. There is significant variation in both water and energy consumption for similar cleaning quality for different units. This indicates that

there is potential for energy and water savings improvements. There is no clear correlation between the cleaning effect and the energy and water consumption per surface area.

4.2.1.4 Analysis of ability to reduce power consumption with reduced force

Based on laboratory tests of 43 domestic HPCs, the study team has analysed the ability of HPCs to reduce the energy consumption when reducing the spray force. If a product has a good ability to reduce power consumption when using the HPC at lower pressure and flow rates – assuming no increase in cleaning time - this may provide energy savings for the user.

Figure 46 shows for each of the 43 HPCs tested the rated power and power draw at minimum and maximum spray force and with a rotating nozzle. Where the red dots (minimum spray force) are low compared to the blue and green dots, the HPC has a good ability to reduce the power draw and thereby the energy consumption.

Figure 46. Rated power and power draw at minimum and maximum spray force and with a rotating nozzle for a test sample of 43 domestic HPCs

On average, the HPCs reduced the power draw 35% at minimum spray force compared with the rated power, while the best reduced it by 70% and the worst by 4%. This clearly indicates a large market spread of power reduction ability.

4.2.1.5 Analysis of weight of domestic products

The weight of the HPCs is dependent on the individual components, features such as hot water and sturdiness. Professional types are often heavier than domestic types because they are built for many operating hours and to be used in variety of usage situations perhaps with different operators. Professional HPCs also have more types of form factors

such as with two or four wheels, caged to be moved with a fork-lift, wall-mounted and stationary.

Domestic HPCs are more standardised as mobile types with two wheels though they often exist in three basic series: An entry-level line, a sturdier and higher quality line and a compact line. The study team has analysed the weight of domestic products based on the technical data collected from web sites. Professional products have not been included due to their many different applications which make it difficult to compare the products on equal terms. The weight of domestic products has been divided into seven ranges in steps of 5 kg. The distribution can be seen in Figure 47. The distribution of the weight of domestic HPC products is fairly spread out. The heaviest domestic HPC weighs 47 kg while the lightest only weighs 2.9 kg.

Figure 47. Weight distribution of the sample included in the analysis

4.2.1.6 Analysis of detergent use

The amount of detergent that the HPC uses in operation is stated for some of the HPCs (approximately 25%). Of the remaining 75%, most of them can use detergent but it is considered an add-on accessory and the minimum or maximum detergent dosage is not specifically stated. Many of both the domestic and professional models also have a built-in function which allows the amount of detergent to be manually adjusted. In the operation and maintenance manual, a manufacturer states that foam detergents can be adjusted to between 1% and 5% of the water consumption and low-foaming detergents can be adjusted to between 1% and 8% of the water consumption. The detergent use for those HPCs where the amount of detergent use is specified is shown versus the maximum flow rate in Figure 48.

Figure 48. Detergent use vs. maximum flow rate

The use of detergent compared to the maximum flow rate shows a good correlation and approximately follows a linear trend. A calculation of the ratio shows that all, except one, have a detergent use between 4% and 8% of the maximum flow rate which is in line with what one of the manufacturers stated in the operation and maintenance manual.

4.2.1.7 Analysis of noise

This section analyses the sound power (L_{wa}) and the sound pressure (L_{pA}) based on the technical specifications. The sound power and pressure figures are presented for HPCs in each of the seven categories (see Figure 49). There is a large variation of sound power and sound pressure levels within each category and also between the categories. Combustion motors slightly increase the levels.

Figure 49. Sound power and pressure for each of the 7 categories

4.2.2 Products with standard improvement options, BAT and BNAT

The following sections describe different areas of technological progress and product design, which have an influence on product lifetime, energy, water and/or other resource consumption (e.g. materials, detergents) and noise emissions. For each technology area, it is stated if the improvement options are standard, BAT (Best Available Technology) or BNAT (Best Not yet Available Technology).

4.2.2.1 Energy efficiency in pumps and motors

Motor-pump automatic shutdown (standard)

Most HPCs automatically shut down when the spray lance is not operated. For combustion engine HPCs, there would be a short time period before the engine shuts down to avoid many stop-starts.

Hydrostatic drives (BAT)

The pump commonly employed with HPCs is a form of a hydrostatic pump, the swash plate and axial piston pumps described previously. They are compact in design and also allow through-drive via a simple in-line motor (electric or combustion). The pumps are easier and more economical to manufacture. The variable displacement type of these pumps can continuously alter fluid discharge per revolution and system pressure based on load requirements, maximum pressure cut-off settings, or horsepower/ratio control. This offers power savings compared to other constant flow pumps in systems where prime mover/diesel/electric motor rotational speed is constant and the required fluid flow is non-constant. However, alternative pump arrangements include rotary vane, radial piston and Archimedes screw.

Energy-efficient water pumps (BAT)

Clean water pumps are generally very similar in terms of design options. With clean water there is little risk of clogging or blockage. As such, there is no differentiation between most of the standard designs of displacement water pumps between manufacturers. However, BAT improvements in design are seen as product ranges move from domestic through to commercial product application achieved with minor design modifications. Many of these design improvements are aimed at improving operational life, running time and/or maintainability of pumps and include improvements such as better seals, the use of ceramic pistons (achieving a five times better operating life), better surface finishes and reduced frictional losses.

Deployment of better and more efficient pumps such as the Triplex type in consumer products would increase costs and weight but can show benefits in terms of longer lifetime and lower energy consumption. A typical Triplex-type pump (see Figure 50) may incorporate:

- stainless steel hardened piston guides;
- stainless steel check valve;
- forged brass (or stainless steel option) head with corrosion-proof ceramic plungers;
- double sealing gaskets (for high and low pressure);
- forged brass connecting rods for long durability;
- oversized bearings.

Figure 50. An example of a Triplex pump (LW Series Triplex Pump – Comet Industrial Pumps, Italy)

In order to arrive at even higher energy efficiencies, the surface roughness of the pumps has to be improved. The surface roughness of the pump depends on the casting method and if the surface is polished or coated. User behaviour regarding prevention of limescale build-up and drain-down procedures following cleaning task completion may also yield longer term advantages.

Standard pumps are often produced by sand casting of metal (cast iron, bronze, steel, etc.), which is a cost-efficient production method and therefore widely used in pump production. Sand casting does, however, result in rougher products than products made using other types of casting. A reduced roughness of the impeller and the volute can decrease losses and thereby increase the energy efficiency. However, most manufacturers find that the increased cost of investment casting does not outweigh the benefits.

Delivering high pressure alone is not enough for certain cleaning tasks. The maximum flow rate that a given machine can achieve has a significant effect on cleaning performance when it concerns the removal of dirt after it has been loosened from the surface. A machine with a lower maximum pressure but higher flow rate may outperform a product with higher pressure. This is especially the case where the amount of dirt requires more water for removing it.

High-efficiency motors (BNAT)

Brushless DC motor (BLDC) technology is widely deployed in a range of different sectors including HVAC, general air movement, refrigeration, vacuum cleaners and small portable garden equipment. At the time of writing, this technology has not yet been deployed in the HPC application and is thus a BNAT. In particular, increased demand for cordless, battery-operated products such as vacuum cleaners has resulted in significant developments within this sector. Additionally, Ecodesign measures in categories such as ventilation fans have driven deployment of BLDC motors.

BLDC motors offer high efficiency but are generally deployed in continuous applications such as cleaning, ventilating or blowing applications due to the higher energy efficiency gains there. A very high power to size ratio can be achieved which may be useful for smaller, more compact products.

It may be argued that the less frequent use of HPCs, a generally low price point expectation from consumers and the perception of 'lower technology' may limit the potential for BLDC application in these products. HPCs are high-power devices and the power levels demanded for effective cleaning do not ideally suit BLDC motors although the technology might be deployed in portable, battery-operated units. Control of BLDC motors is more complex and inverter controls would be required.

Electric motor with variable speed drive (BNAT)

The motor supplies the mechanical energy for the pump in order to release the water at a desired flow and/or pressure out of the high-pressure cleaners. This is done by controlling the rotational speed of the motor which drives the shaft and controls the specific speed of the pistons in the displacement water pump.

The majority of domestic and light professional HPCs utilise single-phase induction motors (SPIM). These are normally used in fixed speed applications and full load efficiencies (output shaft power/electrical input power) may be up to 85% in a well-designed motor. However, motor efficiencies may vary from 30% to 85% in practice with losses caused by copper losses in the stators and rotor windings (resistance effects), iron losses (due to eddy current effects) and frictional losses. The efficiency of single-phase induction motors is not addressed by existing ecodesign measures such as Regulation (EC) No 640/2009 – this is only applicable to three-phase motors.

Using variable speed drives (VSDs) with motors can help to better control the rotational speed, adapting the flow and/or pressure of water to user specific needs. The use of VSDs with motors and (rotodynamic) water pumps can reach a level of energy savings of 20-50% considering the whole pump unit (motor, pump and VSD). For example, reducing the motor speed to 80% of the maximum can save up to 50% energy. However, the reduction depends on the use profile, i.e. the annual operational time and the flow pressure the HPC needs from the pump to supply water and pressure compared to the full load flow pressure.

Variable speed drives are widely employed in fan and pump applications in industrial applications. VSDs are commonly employed with AC induction motors and may be used to control both the speed and the torque delivered by the motor. This technology lends itself to closed loop control applications in which the control of a given process parameter (e.g. flow or pressure) can be regulated by suitable measurement transducers and controlled via the VSD. Packaged off-the-shelf VSDs typically range from 0.25 kW up to 1 000 kW, with smaller units being aimed specifically at pump and fan control. VSDs offer 95-98% efficiency.

For HPC applications, the use of packaged VSDs is unlikely to be economic and the tradeoff between energy savings through closed loop control and increased costs and complexity requires consideration and therefore it is mostly a BNAT.

Technologies for combustion-engine-powered HPCs (BNAT)

All current products utilise readily available small garden machinery four-stroke, singlecylinder petrol or diesel engines. Advantages include ease of maintenance, no requirement for specialist tools, and commonality of parts across a range of different garden or commercial equipment. This is an established technology with little development or improvement.

The decision to use a petrol or diesel HPC is primarily based upon the following:

- Petrol engines are powerful, reliable and generally involve a lower acquisition cost compared to diesel machines.
- Diesel running costs are lower and better durability means a longer lifetime.
- Availability of fuel on site and other portable equipment (e.g. is equipment used mostly petrol or diesel?) For smaller commercial machines, the choice of petrol will be the obvious one because petrol will be used in other machinery (two-

stroke) with two-stroke oil in garden machinery etc. For site-based use where a supply of diesel may already be present for vehicles etc., the choice of diesel or biodiesel may be more appropriate. Diesel fuel consumption appears similar across a range of machines reviewed.

• Increased noise of diesel engines.

Commercial petrol four-stroke engines have a typical efficiency of 20-30%, while commercial diesel engines have a typical efficiency of 45%. Diesel has a longer durability than petrol, typically double the lifetime. Diesel oil assists cylinder bore and piston ring lubrication, reducing wear. Furthermore, diesel engines weighs more, though this is offset by improved reliability), have simplified controls (direct fuel injection, no electronic ignition), potentially high emission rates and offer biodiesel options, which improves lubrication and offers reduced environmental risk in the case of spillage.

Developments in small machinery combustion engines include the High-Efficiency Hybrid Cycle (HEHC) Rotary engine⁷⁵. This utilises a modification of the Otto cycle formerly deployed in automotive applications (Wankel engine) and claims a 20% reduction in fuel consumption and 30% reduction in material compared to conventional petrol combustion engines.

The HEHC engine combines constant volume combustion and overexpansion for increased efficiency compared with conventional combustion engines. At the time of writing, only one manufacturer of engines is exploring this technology.⁷⁶ Though this is BNAT for small machinery, it is not expected to have any importance for developments in the energy efficiency of HPCs in the near future.

4.2.2.2 Energy efficiency in water heating

High-efficiency burner boilers (standard)

Hot water high pressure cleaners can be equipped with a burner that has an improved boiler/burner efficiency which reduces oil usage for heating water. EUnited Cleaning, the European Cleaning Machines Association, has set up a voluntary labelling scheme EUnited Cleaning Burner efficiency that applies to oil-heated high pressure cleaners. The scheme sets requirements on thermal exhaust loss, burner efficiency, CO emission and dust emissions.

Direct hot water feed (standard)

When a more resource-efficient and lower-cost hot water supply is available at the place for cleaning, a standard option is to use a cold water HPC that allows hot water inlet.

Improved heat exchanger (BAT)

The pressurised water is heated by circulating in a coil inside the burner chamber (see Figure **33**). Better coil design may improve the heat transfer to the water and increase the energy efficiency.

Improved thermal insulation of heated parts (BAT)

If the HPC contains a built-in water tank, the tank can be insulated which reduces standby losses from the tank and saves energy. All tanks are insulated but a further improvement in insulation could typically yield 80% savings in losses for a 50% increase in insulation.

Temperature control of the water tank also reduces energy consumption. Many professional HPCs incorporate an eco-mode, holding the water at a lower temperature (typically 60 °C) whilst maintaining the maximum flow rate.

Use of waste heat from motor (BAT)

⁷⁵ <u>http://news.mit.edu/2014/liquidpiston-small-efficient-rotary-engine-1205</u>

⁷⁶ http://liquidpiston.com/

Waste heat from the combustion motor can be used to preheat water before entering the water heater. A coil is built into the motor being heated by the combustion process. It is not a standard option, but BAT used by some models on the market.

4.2.2.3 Spraying technology

Improved nozzle designs (standard / BAT)

Improved nozzle design improves the cleaning performance and may also yield water savings. The nozzle design includes a small high-pressure nozzle as a concentrated jet, spraying systems, spray patterns and rotary nozzles. These can be designed to provide high pressure and low water flow. However, some cleaning tasks need a high water flow to remove loosened dirt and low water flow attachments cannot be used for these tasks.

Some brands design their own improved-design nozzles, while others brands normally purchase them from suppliers.

Furthermore, the user selection of attachments and the way the user cleans the subject will greatly influence the water consumption.

4.2.2.4 Water and consumables efficiency

Use of water-saving attachments (BAT)

See above under improved nozzle designs.

Use of alternative water resources (standard)

Some HPCs have self-priming pumps and can use water sources other than tap water, e.g. water from ponds and lakes. This naturally requires available water sources close to the locations where HPCs are used.

Water recycling for stationary HPCs (standard/BAT)

Stationary HPCs may use recycled water from the use of the HPCs. It is the standard option for commercial car wash machines.

Precise detergent regulation (BAT)

Detergent consumption can be improved by better regulation of the amounts of detergent added to the water and providing users with better instructions.

4.2.2.5 Sensors and automatic controls

Advanced control (BAT)

Some of the latest HPCs incorporate advanced controls that make the selection of the correct pressure, flow and detergent easy to match with the cleaning task. As an example, excess pressure for a car cleaning task could result in damage to paintwork or trim or water ingress to the vehicle together with excess water and detergent usage. By making it easy and simple for the user to match the product's performance to the cleaning task, resources can be optimised. This kind of control is mainly for domestic users, because they may have less knowledge and experience of optimised settings.

Other controls – also suitable for professional users - include:

- automatic eco-modes;
- leakage detection;
- temperature of hot water.

Examples of advanced control can be seen in Figure 51.

Figure 51. Two examples of pressure control

NB: The example to the left is an advanced regulation via a display, while the example to the right is a manually settable pressure regulation.

User selection and visual confirmation via a display on the trigger handle means that users are more likely to operate the equipment correctly compared with controls located on the chassis. The majority of HPCs incorporate some form of manually settable pressure regulation.

Benefits of controls include:

- water saving and waste reduction;
- detergent reduction;
- reduction of run time;
- maintenance period reduction and lifetime extension.

Other controls (standard/BAT)

Especially for professional HPCs, electronic controls can be installed to supervise the machine's main functions, for example combustion, control of losses from the hydraulic circuit, maintenance time, temperature control.

An example of the best controls may be seen in HPCs that include mode selection and match the pressure/flow to the cleaning task by controls on the lance head rather than at the HPC panel.

Optimisation is more likely when the controls are within easy reach of the operator and the means of selection is simple.

4.2.2.6 Resource efficiency

Design improvements (standard/BAT)

There are several design improvements available for lifetime extension and use of materials for reduced environmental impact such as the following:

- Use of materials which increase the lifetime of components (e.g. ceramic and stainless steel components for increased resistance to wear, weather, corrosion, soap, acids, chlorine, etc.)
- Optimisation of material content for components.
- Critical components identification regarding breakdown and easy repair or replacement of those (e.g. piston seals).
- Modular build-up providing easy access to all components for repair and recycling.
- Improved water seals.

- Design of components to reduce build-up of limescale.
- Use of recycled plastic.

Furthermore, dedicated user information regarding use, maintenance and storage when not in use may increase the lifetime.

4.3 Production, distribution and End-of-Life

This section provides an overview of the components and materials used in high pressure cleaners, their production, distribution and end-of-life. The composition of high pressure cleaners has been established based on the typical products placed on the EU market. The inputs will be used to model the environmental footprint in a later task.

4.3.1 Product weight and Bills-of-Materials (BOMs)

The list of the main components of the typical products has been compiled according to different data sources^{77,78,79,80,81,82}, expert judgment and stakeholder input. In Table 39 this list is provided for each typical product, as well as the main materials (in MEErP nomenclature) for each component. The specific reference used to establish the BOM is shown for each component.

A website⁸³ comparing larger high pressure cleaners that suit the definition of professional in this report was used to cross-check that the total weight of the BOM was appropriate according to the declared product weight of typical professional products. For domestic high pressure cleaners, a cross-check was also done with several products offered on the market.

Generally, it is noticed that high pressure cleaners are getting heavier compared to the figures shown in a LCA study done in 1998⁷⁷, which gave the weight of the product assessed as 6.135 kg including packaging. However, the study does not show the performance parameters of the product assessed.

Component	Materials
Motor ⁷⁸	Steel, aluminium sheet/extrusion, copper winding wire, plastics types
Water pump & piston chamber ⁸⁰	Stainless steel, brass, aluminium, different types of plastic

Table 39. List of components and materials for typical domestic and professional HPCs

⁷⁷ Caspersen, N.I. & Sørensen, A. Improvements of products by means of life cycle assessment; high pressure cleaners. Journal of Cleaner Production 6 (1998). 371-380.

⁷⁸ EUP Lot 11 Motors. Final report. 2008. University of Coimbra (Task 4).

⁷⁹ Pressure washers description. Accessed June 2018: <u>https://www.explainthatstuff.com/pressurewashers.html</u>

⁸⁰ Ecodesign Pump Review. Study of Commission Regulation (EU) No.547/2012 incorporating preparatory studies on 'Lot 28' and 'Lot 29' (Pumps). Final report. Viegand Maagøe and VHK. July 2017 (not publicly available).

⁸¹ Review study on vacuum cleaners – Draft interim report. Viegand Maagøe and VHK. January 2018. Available at: <u>https://www.review-vacuumcleaners.eu/documents</u>

⁸² Kãrcher website: How does a pressure washer work? Accessed July 2018: <u>https://www.kaercher.com/int/inside-kaercher/difference-kaercher-magazine/kaercher-stories/how-does-</u> <u>a-pressure-washer-work.html</u>

⁸³ http://www.ultimatewasher.com/electric-pressure-washer/index.htm

Component	Materials		
Housing ^{77,82}	ABS, other types of plastic		
Water inlet ⁸⁴	PP, brass, other types of plastic		
High-pressure hose ^{77,79,82}	HDPE, stainless steel, brass, PVC, different types of plastic and rubber		
Cleaning attachment (i.e. lance) ^{77,79}	Brass, stainless steel, different types of plastic		
Detergent hose and tank ^{77,79,82}	HDPE, PVC, PP, LDPE		
Fuel tank	HDPE		
Burner	Steel, aluminium, brass, ceramic, copper, different types of refractory materials		
Electric cable & plug ⁸¹	PVC, copper winding wire		
Casing ^{77,81}	ABS, HI-PS, steel sheet, other types of plastic		
Wheels ⁸¹	PP, other types of plastic and rubber		
Safety components ⁷⁷	Brass, stainless steel, different types of plastic, aluminium		
Integrated circuit board ⁸¹	avg., 5% Si, Au		
Packaging ⁸⁵	LDPE, cardboard, wooden pallet		

The material composition has been classified according to the resource use input required in the Eco-Modelling Framework Tool.

 ⁸⁴ Assessed to be made of polypropylene as a robust plastic without any special need concerning handling re-quirements, e.g. corrosive chemicals, very hot water temperatures.
 ⁸⁵ Expert judgment.

Table 40.	Estimated	material	composition	for	each	typical	high-pressure	cleaner in	Eco-Modellir	١g
Framework	Tool forma	at								

Material group	Domestic high pressure cleaners – cold water	Professional high pressure cleaners - cold water
Bulk plastics (kg)	5.26	8.02
Ferrous (kg)	3.88	14.94
Non-ferrous (kg)	4.01	8.13
Electronics (kg)	0.03	0.05
Misc. (kg)	1.5	2.25
TOTAL WEIGHT INCL. PACKAGING (kg)	14.68	33.69
Bulk plastics (%)	35.8	24.0
Ferrous (%)	26.4	44.8
Non-ferrous (%)	27.3	24.4
Electronics (%)	0.2	0.1
Misc. (%)	10.2	6.7
TOTAL WEIGHT INCL. PACKAGING (%)	100	100

Overall, a dominance of bulk plastics and metals (ferrous and non-ferrous) can be seen in high pressure cleaners. This is typical of a product like this, which has a similar material composition to vacuum cleaners, electric motors and water pumps with some additional components adding pressure and safety.

For domestic high pressure cleaners, bulk plastics are the dominant component in comparison to other material groups, whilst for professional high pressure cleaners it is ferrous metals. According to desktop research⁸⁶, this is because professional cleaners typically use larger and heavier motors as they provide more power compared to the smaller motors in domestic cleaners. The BOMs for the motors and pumps were thus adjusted accordingly, considering the sanity check performed on the total product weight.

4.3.2 Assessment of primary scrap production during sheet metal manufacturing

The primary scrap production during sheet metal manufacturing is considered to be negligible. It is assumed that cuttings and residues are mostly reused in new materials either at the production site or at a recycling site off site.

⁸⁶ <u>https://pressurewashr.com/induction-vs-universal-motor-pros-cons/</u>

4.3.3 Packaging materials

Cardboard and low-density plastic are used to protect the products during transportation. They are then sorted by the end user and sent for disposal. Cardboard is generally well sorted, collected and recycled both in households and businesses. Low-density plastic is likely to be incinerated with different percentages of energy recovery throughout the EU.

4.3.4 Volume and weight of the packaged product

The volume of the packaged product is assumed to be same as the dimensions of typical high-pressure cleaners plus five additional centimetres due to packaging. This means that the volume of the packaged product (full-size high pressure cleaner) is 13.1 kg and 31.0 kg for domestic and professional high pressure cleaners, respectively, excluding packaging, and 15 kg and 34 kg including packaging.

4.3.5 Actual means of transport employed in shipment of components, subassemblies and finished products

For distribution, it is assumed that 70% of packaged high pressure cleaners will be transported by ship and truck and 30% only by truck considering most of the cleaners are produced outside Europe (i.e. transported by ship and truck) and the rest produced within Europe and therefore transported by truck. For cleaners transported by ship and truck, a transport distance of 10 000 km by ship and 3 000 km by truck is assumed and for cleaners transported only by truck, a transport distance of about 3 400 km is assumed (conservative assumptions considering the many transport scenarios). However, transport by ship and by truck is often negligible in life cycle assessments since the impact is often small compared to the environmental impact of the rest of the product.

4.3.6 Material flow and collection effort at end-of-life (secondary waste), to landfill/ incineration/ recycling/reuse (industry per-spective)

Caspersen and Sørensen⁷⁷ established an end-of life materials distribution for packaging, plastic and metal materials as is shown in Table 41.

End-of-life route	Metals in product	Plastics in product	Packaging materials
Reuse (%)	15	0	0
Incineration (%)	0	25	70
Landfill (%)	85	75	30
Recycling (%)	0	0	0

Table 41. End-of-life scenarios according to Caspersen and Sørensen⁷⁷

Although this seems to be the only Life Cycle Assessment study done for HPCs that is publicly available, it is already 20 years old and the end-of-life routes for these material fractions are very different today. For example, the default values for the relevant material groups shown in Table 39 in the Eco-Modelling Framework Tool are shown in Table 42, and have been adapted slightly to reflect the scenario routes for the vacuum cleaners review study⁸¹ and those used for the water pumps review study⁸⁰. Both studies were considered due to the technological similarities and differences of high-pressure cleaners with both product groups, and the fact that both are recent studies (2018 and

2017 respectively). As can be seen from both tables, the share of relevant materials sent to landfill has been greatly reduced since the 1998 study, while fractions sent for reuse/recycling are quite different (probably because in the 1998 study reuse accounted for material recycling).

End-of-life routes shown in Table 42 are those to be considered as input data for modelling in the Eco-Modelling Framework Tool. Differences may exist between domestic and professional products which will be consulted with stakeholders.

End-of-life route	Bulk & Tech plastics	Ferrous & Non-ferrous	Electronics	Misc. (packaging)
EoL mass fraction to reuse	1%	5%	1%	1%
EoL mass fraction to recycling	29%	80%	50%	64%
EoL mass fraction to (heat) recovery	30%	5%	0%	1%
EoL mass fraction to non-recov. incineration	10%	5%	30%	5%
EoL mass fraction to landfill/missing/fugitive	30%	5%	19%	29%

Table /	12	Dofault	ond_of_life	routos f	or rolovant	matorial	around in	EcoPoport too	1 (vorcion 3.06)
I able -	-2.	Delault	enu-or-me	Toutes I		material	groups in	LCOREPOIL LOO	

4.3.7 Time-to-failure of critical parts

In an endurance test of 42 domestic HPCs performed by a stakeholder, it was observed that the failures are mostly in the following parts:

- the carbon brushes in the electric motor are worn and no longer make contact, resulting in a defective motor;
- the bearings of the motor become defective;
- the bearings of the pump become defective;
- water leakages.

Consumer surveys carried out by Which?⁸⁷ revealed that common problems were:

- water leaks from the HPC body 22%;
- lance failures **12%**;
- I Pressure losses **11%**.

Which? stated that some of the problems were caused by improper use. For example, water leaks frequently appear after a pressure washer has been left idle over the winter and are often caused by water in the pressure washer freezing, expanding and then splitting the plastic components inside the pump.

⁸⁷ https://www.which.co.uk/reviews/pressure-washers/article/which-pressure-washer-brand/most-reliablepressure-washer-brands

Since domestic products generally have a low annual use problems might also be related to the low use, for example, of valves and seals in motors and pumps. Blockages of the inlet filter and of the lance/accessories are also commonly seen.

Professional HPCs are more expensive and repairs and regular maintenance are typically carried out. A stakeholder informs that it is common to have service checks after each 500 hours of use and when the pump needs to be refurbished or replaced (pumps with longer lifetimes like triplex may not need such a service). Leaving water in the pump can result in mineral build-up and corrosion; this means that high pressure cleaners that are not in use on a daily or very regular basis should be emptied of water. The product should also be protected against freeze damage.

Lifetime analyses are further provided in Task 2 and Task 3.

The requirements for endurance as specified in the applicable European Product Safety standards are as follows. Part 2 of the product standard details the requirements; EN 60335-2-79 Clause 18: Endurance specifies:

- 18.101 'The insulation, contacts and connections shall not be damaged and shall not work loose, as a result of heating, vibration etc.'
- Motor-operated devices compliance is checked by tests 18.102 AND 18.106 with additional tests as applicable.
- For 18.102 the machine is operated under normal operation and at a rated voltage for 96 hours.
- Machines are started (Clause 18.103) under *normal operation,* 50 times at 1.1 x rated voltage and 50 times at 0.85 x rated voltage with the duration not being less than 10 s and at least 10 x the period required from start to full speed.
- Tests are interspersed with other safety tests (e.g. dielectric strength and leakage current tests) during the endurance tests to ensure that safety has not been compromised by the Clause 18 tests.
- 'Connections, handles, guards, brush-caps and other fittings or components shall not have worked loose, and there shall be no deterioration impairing safety in normal use'.

It can be seen that the endurance tests specified are to ensure that safety is assured rather than considering the 'life' of the product in practical use.

4.4 Recommendations

4.4.1 Refined product scope from the technical perspective

There are no further recommendations for a refined product scope.

4.4.2 Barriers and opportunities for Ecodesign from a technical perspective

Barriers

• Some of the technologies identified for reducing in-use consumption of energy, water and detergent require design changes or different components, which may be too expensive compared to the marginal gains due to the infrequent usage pattern for domestic products, and even for some of the professional products. However, this will be further investigated in Task 6.

Opportunities

• Existing Ecodesign measure for electric motors and pumps do not apply to singlephase motors and pumps used in domestic HPCs and some of the professional HPCs. Therefore, there is an opportunity to develop measures for those components.

- Differences in water and energy consumption between the products indicate a market spread, which may provide an opportunity for promoting the BAT products.
- Selected technical measures for in-use resource consumption for mainly professional products may be cost-efficient such as detergent dosage systems.
- Provision of cleaning mode selection (simple, at point of use, e.g. on the head) to optimise pressure/flow and detergent (and/or heat) for a given cleaning task.
- Extension of lifetime through use of better material, facility repairs and improved user information on use, maintenance and storage.
- Assessment and characterisation for the full operating envelope is needed.

Annexes

Annex 1. Definitions of key parameters and of other parameters

Parameter	Definition	Source (Standard (Clause))
Supply voltage (V)	Also known as rated voltage - voltage assigned to the appliance by the manufacturer.	EN 60335-1 (3.1.1)
	frequency - frequency assigned to the appliance by the manufacturer.	
Power source	Source of energy powering the water pump of the appliance: Electrical – Mains Electrical – Battery Combustion – Petrol Combustion – Diesel Hydraulic or Pneumatic Source of energy heating the water, in hot water high pressure cleaners: Electrical Combustion – gas Combustion – oil	Intertek
Rated pressure (MPa)	Maximum working pressure at the pressure generator during normal operation.	EN 60335-2-79 (3.103)
Power rating (kW or HP)	Also known as rated power input – power input assigned to the appliance by the manufacturer.	EN 60335-1 (3.1.4)
Flow rate (I/m)	Also known as rated flow - maximum flow at rated pressure at the nozzle during normal operation.	EN 60335-2-79 (3.105)
Maximum flow rate (l/m)	The highest possible flow rate at the nozzle. Typically, the maximum flow rate occurs at working pressures lower than the rated pressure and with a nozzle designed for spraying of cleaning agents.	EN 60335-2-79 (3.106)

Parameter	Definition	Source
Area performance (m ² /h)	No formal definition. A relative term for describing the cleaning performance of a high pressure cleaner. A more formal definition should form part of the development work for test methods establishing the performance of high pressure cleaners.	Intertek – Manufacturers' data
weight	 Several weight labelling requirements are covered: Packaged weight of product complete with all accessories 	Intertek
	 The weight of the high pressure cleaner complete with its primary tools is a handling requirement and forms part of the product instructions. 	
Dimensions	Dimensions to include:	Intertek
	 Packaged dimensions of product complete with all accessories Nominal size of product complete 	
	with its primary tools	
Application	No formal definition. A relative term for describing how the HPC is used and to provide a relative indication of the cleaning capability of a high pressure cleaner, e.g. 'Light domestic use'. A more formal definition should form part of the development work for test methods establishing the performance of high pressure cleaners.	Intertek
Water feed and	No formal definition. Source	Intertek
	butt. Generally, taken as ambient temperature of source water.	
Self-priming (Y/N)	Manufacturer-declared – will	-
	other reservoir for feed.	

Parameter	Definition	Source
Rated temperature	Maximum temperature of the cleaning agent during normal operation.	(Standard (Clause)) EN 60335-2-79 (3.107)
Sound Pressure Level (dBA)	Noise emission.	EN 60335-2-79 - Annex CC
Cable length (m)	Length of cable as supplied by the manufacturer.	EN 60335-2-79 (25)
Protection Class (Electric Shock)	Machines shall be one of the following classes with respect to protection against electric shock:	EN 60335-2-79 (6)
	class I, class II or	
	class II, orclass III.	
IP rating	Degree of protection against harmful ingress of water.	EN 60335-2-79 (6.2)
Maximum supply feed length	No formal definition – only applicable if pressure drop via long hose causes performance degradation.	-
Maximum power (Water heater/if fitted) – (kW)	Maximum power of the water heater in kW, if applicable (for electric heaters, the input Power; for gas-fired or oil- fired heaters, the output power).	EN 60335-2-79 (7.1)
Cleaning agent, volume	Water with or without the addition of gaseous, soluble or miscible detergent or solid abrasive. Volume to be declared by manufacturer (not a standard requirement).	EN 60335-2-79 (3.113)
Accessory types/supplied	No formal list or definition types – standard lance, turbo lance, patio cleaner, car wash brush. Will need to be defined as part of any meaningful performance evaluation.	Manufacturers' data

Other parameters

Parameter	Definition	Source						
Commercial use	Intended use of machines. These machines are not intended for normal housekeeping purposes by private persons and may be a source of danger to the public.	EN 60335-2-79 (3Z.101)						
Operator	Person installing, operating, adjusting, cleaning, moving or performing user maintenance on the machine.	EN 60335-2-79 (3.122)						
Country	2009	2010	2011	2012	2013	2014	2015	2016
---------------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------
Austria	23 493 260	28 397 410	24 709 880	21 465 830	32 186 430	30 490 920	33 889 710	36 032 630
Belgium	22 785 380	29 908 650	39 673 880	42 814 500	63 082 910	67 980 670	66 473 650	84 897 300
Bulgaria	247 090	442 960	913 290	792 640	1 160 710	1 755 960	2 252 560	2 149 270
Croatia	1 181 660	1 779 810	2 556 930	3 259 070	1 790 310	2 742 360	3 290 390	741 410
Cyprus	12 070	0	300	65 260	34 240	232 510	496 920	570 090
Czech Re- public	27 912 160	20 176 530	32 570 470	33 395 570	34 910 100	32 451 150	38 776 650	39 621 160
Denmark	46 324 980	50 812 370	45 695 560	51 770 490	59 263 250	73 087 480	79 723 700	49 174 120
Estonia	1 151 310	1 219 610	1 243 650	1 609 610	1 198 260	1 064 000	968 720	1 485 840
Finland	3 958 700	2 248 000	5 149 960	4 196 240	6 112 090	6 148 730	3 578 330	2 723 500
France	35 011 990	32 869 260	29 840 300	31 467 810	38 063 830	38 963 990	41 131 540	31 875 470
Germany	449 651 250	482 563 020	591 666 330	646 543 610	675 039 130	644 332 080	608 496 710	629 105 080
Greece	723 330	376 780	697 750	445 020	650 640	625 430	1 973 460	2 134 730
Hungary	25 238 470	30 135 790	30 773 210	30 918 190	29 429 160	31 871 290	27 961 680	27 493 620
Iceland	NA							
Ireland	734 380	752 370	266 260	163 630	438 700	1 235 490	1 516 810	895 140
Italy	283 255 220	294 026 750	307 258 430	335 524 130	331 466 850	328 348 510	330 804 430	324 295 370
Latvia	923 460	623 140	1 507 280	1 078 020	1 877 100	3 156 490	2 962 260	2 122 860
Lithuania	1 230 120	2 745 180	3 102 670	5 594 560	6 522 640	6 470 140	4 991 700	5 697 530
Luxemburg	150 110	318 850	244 540	373 540	6 149 910	573 970	356 940	509 050
Malta	16 660	0	18 530	43 800	55 670	0	45 800	500
Netherlands	48 642 130	43 969 790	50 530 900	48 267 140	50 078 040	41 130 950	52 510 540	68 929 810
Norway	NA							
Poland	15 281 010	14 209 860	22 683 840	25 220 980	35 515 720	34 344 880	48 853 360	57 700 770
Portugal	1 746 100	1 970 330	2 736 230	3 731 100	3 994 020	4 274 750	2 088 320	1 578 410
Romania	1 107 620	893 720	584 070	830 770	795 040	1 811 380	1 959 560	1 707 810

Annex 2. Value of exports of steam or sand blasting machines and similar jet-projecting machines in euros – time series

Slovakia	1 048 000	1 449 520	884 940	1 046 010	1 215 420	607 510	244 050	1 204 110
Slovenia	11 049 950	15 047 540	11 218 910	13 509 080	12 242 460	16 860 880	22 844 520	17 592 790
Spain	20 269 480	24 305 020	25 145 880	23 626 760	20 607 070	20 809 320	23 933 290	32 954 560
Sweden	8 030 870	6 356 080	22 294 740	11 529 380	8 952 670	7 451 210	8 473 410	9 006 500
United King- dom	18 504 960	21 698 670	36 133 230	40 906 130	40 245 050	46 759 680	44 797 340	41 713 390

Country	2009	2010	2011	2012	2013	2014	2015	2016
Austria	38 102 590	44 705 970	47 060 930	45 479 770	45 036 700	49 435 220	56 207 120	55 249 540
Belgium	36 016 840	37 807 650	40 839 580	45 257 080	57 716 090	53 845 470	57 338 280	65 302 780
Bulgaria	4 798 290	3 781 490	4 236 700	3 738 220	7 288 630	4 936 960	6 502 380	6 283 540
Croatia	9 794 460	5 432 500	4 667 530	5 901 660	5 395 870	4 760 050	6 972 470	7 418 000
Cyprus	1 006 930	1 608 360	625 660	585 280	646 100	415 800	490 290	507 150
Czech Re- public	18 145 210	13 173 800	16 345 750	13 243 270	18 034 820	16 659 690	21 388 210	24 425 450
Denmark	31 073 040	35 620 460	31 355 360	33 909 570	38 831 800	45 028 170	52 121 540	39 613 700
Estonia	2 696 690	1 777 550	2 123 730	3 084 450	2 484 890	2 193 000	2 699 710	2 952 750
Finland	12 638 790	13 634 210	16 758 720	16 021 080	14 539 130	13 255 610	14 460 670	14 651 410
France	131 834 470	139 738 150	143 293 050	163 951 890	161 740 790	163 764 310	172 534 150	178 653 730
Germany	137 115 010	138 947 300	150 995 070	161 244 850	160 644 950	188 134 660	193 053 280	190 281 430
Greece	12 329 460	10 527 160	6 596 360	4 214 800	4 675 380	5 676 740	8 056 900	6 170 520
Hungary	6 390 970	6 784 000	15 065 900	7 172 180	8 007 920	9 507 790	10 868 340	17 083 980
Iceland	NA							
Ireland	5 714 790	5 725 040	4 456 880	4 651 980	5 837 650	8 077 830	7 428 600	6 368 730
Italy	34 365 370	51 546 920	44 450 760	41 899 340	42 675 340	54 134 150	61 984 560	62 891 360
Latvia	1 351 750	1 504 770	2 769 020	2 338 360	2 841 150	3 221 060	3 963 810	3 218 010
Lithuania	1 852 280	2 361 770	2 706 840	3 623 270	4 846 720	5 405 380	5 862 750	6 387 950
Luxemburg	2 602 230	2 423 020	2 611 600	3 402 670	3 550 330	3 453 500	3 145 910	4 355 060
Malta	199 590	190 990	332 350	261 230	372 660	340 350	303 410	199 970
Netherlands	24 110 580	24 142 700	28 965 120	29 492 410	25 331 870	28 300 550	32 984 740	37 647 160
Norway	NA							
Poland	34 187 350	35 034 630	38 402 390	33 903 400	34 576 480	48 526 910	57 136 880	66 297 320
Portugal	12 340 590	11 079 460	10 738 980	6 830 860	8 085 160	10 721 740	16 017 280	14 689 300
Romania	11 347 080	8 481 760	11 969 570	18 523 920	10 953 680	11 833 040	17 557 280	15 128 680
Slovakia	6 337 830	7 338 110	4 980 870	5 800 730	10 823 470	14 856 240	9 766 580	9 980 920

Annex 3. Value of imports of steam or sand blasting machines and similar jet-projecting machines in euros- time series

Slovenia	6 199 230	6 351 350	6 773 640	5 921 480	5 411 450	11 242 280	13 057 570	16 820 290
Spain	38 362 850	35 739 770	35 321 880	28 626 340	28 944 200	36 207 070	47 031 000	55 693 060
Sweden	24 034 020	27 647 860	29 277 720	29 421 470	27 959 480	27 776 350	32 020 540	31 209 790
United Kingdom	87 491 660	83 267 360	86 325 890	80 203 960	121 907 760	127 104 740	137 035 160	144 806 240

Annex 4. Inflation rates

	1	1	1	1	n		1	1	n	1	r	1
HICP - inflation rate												
Annual average rate of change (%)												
Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
European Union (changing composition)	2.2	2.3	3.7	1	2.1	3.1	2.6	1.5	0.5	0	0.3	1.7
EU (28 countries)	2.3	2.4	3.7	1	2.1	3.1	2.6	1.5	0.5	0	0.3	1.7
Euro area (changing composition)	2.2	2.1	3.3	0.3	1.6	2.7	2.5	1.4	0.4	0	0.2	1.5
Euro area (19 countries)	2.2	2.2	3.3	0.3	1.6	2.7	2.5	1.3	0.4	0	0.2	1.5
Euro area (18 countries)	2.2	2.2	3.3	0.3	1.6	2.7	2.5	1.3	0.4	0	0.2	1.5
Belgium	2.3	1.8	4.5	0	2.3	3.4	2.6	1.2	0.5	0.6	1.8	2.2
Bulgaria	7.4	7.6	12	2.5	3	3.4	2.4	0.4	-1.6	-1.1	-1.3	1.2
Czech Republic	2.1	2.9	6.3	0.6	1.2	2.2	3.5	1.4	0.4	0.3	0.6	2.4
Denmark	1.8	1.7	3.6	1	2.2	2.7	2.4	0.5	0.4	0.2	0	1.1
Germany	1.8	2.3	2.8	0.2	1.1	2.5	2.1	1.6	0.8	0.1	0.4	1.7
Estonia	4.4	6.7	10.6	0.2	2.7	5.1	4.2	3.2	0.5	0.1	0.8	3.7
Ireland	2.7	2.9	3.1	-1.7	-1.6	1.2	1.9	0.5	0.3	0	-0.2	0.3
Greece	3.3	3	4.2	1.3	4.7	3.1	1	-0.9	-1.4	-1.1	0	1.1
Spain	3.6	2.8	4.1	-0.2	2	3	2.4	1.5	-0.2	-0.6	-0.3	2
France	1.9	1.6	3.2	0.1	1.7	2.3	2.2	1	0.6	0.1	0.3	1.2
Croatia	3.3	2.7	5.8	2.2	1.1	2.2	3.4	2.3	0.2	-0.3	-0.6	1.3
Italy	2.2	2	3.5	0.8	1.6	2.9	3.3	1.2	0.2	0.1	-0.1	1.3
Cyprus	2.2	2.2	4.4	0.2	2.6	3.5	3.1	0.4	-0.3	-1.5	-1.2	0.7
Latvia	6.6	10.1	15.3	3.3	-1.2	4.2	2.3	0	0.7	0.2	0.1	2.9

	1	1	1	1	1	T	1	1	1	1	1	
Lithuania	3.8	5.8	11.1	4.2	1.2	4.1	3.2	1.2	0.2	-0.7	0.7	3.7
Luxembourg	3	2.7	4.1	0	2.8	3.7	2.9	1.7	0.7	0.1	0	2.1
Hungary	4	7.9	6	4	4.7	3.9	5.7	1.7	0	0.1	0.4	2.4
Malta	2.6	0.7	4.7	1.8	2	2.5	3.2	1	0.8	1.2	0.9	1.3
Netherlands	1.6	1.6	2.2	1	0.9	2.5	2.8	2.6	0.3	0.2	0.1	1.3
Austria	1.7	2.2	3.2	0.4	1.7	3.6	2.6	2.1	1.5	0.8	1	2.2
Poland	1.3	2.6	4.2	4	2.6	3.9	3.7	0.8	0.1	-0.7	-0.2	1.6
Portugal	3	2.4	2.7	-0.9	1.4	3.6	2.8	0.4	-0.2	0.5	0.6	1.6
Romania	6.6	4.9	7.9	5.6	6.1	5.8	3.4	3.2	1.4	-0.4	-1.1	1.1
Slovenia	2.5	3.8	5.5	0.8	2.1	2.1	2.8	1.9	0.4	-0.8	-0.2	1.6
Slovakia	4.3	1.9	3.9	0.9	0.7	4.1	3.7	1.5	-0.1	-0.3	-0.5	1.4
Finland	1.3	1.6	3.9	1.6	1.7	3.3	3.2	2.2	1.2	-0.2	0.4	0.8
Sweden	1.5	1.7	3.3	1.9	1.9	1.4	0.9	0.4	0.2	0.7	1.1	1.9
United Kingdom	2.3	2.3	3.6	2.2	3.3	4.5	2.8	2.6	1.5	0	0.7	2.7
Iceland	4.6	3.6	12.8	16.3	7.5	4.2	6	4.1	1	0.3	0.8	-1.7
Liechtenstein	:	:			:	:	:	:	:	:	:	:
Norway	2.4	0.8	3.4	2.3	2.3	1.3	0.4	2	1.9	2	3.9	1.9
Switzerland	1	0.8	2.4	-0.7	0.6	0.1	-0.7	0.1	0	-0.8	-0.5	0.6
Montenegro	:	:	:	:	:	:	:	:	:	:	:	:
North Macedonia	3.7	2.2	7.6	-0.1	1.1	3.2	1.8	2.7	0	0.1	0.2	2.1
Albania	:	:	:	:	:	:	:	:	:	:	:	:
Serbia	:	5.8	11.9	8.2	6.2	11.2	7.4	7.7	2.3	1.5	1.3	3.3
Turkey	9.3	8.8	10.4	6.3	8.6	6.5	9	7.5	8.9	7.7	7.7	11.1
United States	3.2	2.6	4.4	-0.8	2.6	3.9	2.2	1.3	1.3	-0.8	0.5	1.7

NB:

:=not available; d=definition differs (see metadata).

Source of Data:	Eurostat
Last update:	17.08.2018
Date of extraction:	28 Aug 2018 12:50:08 CEST
Hyperlink to the table:	https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=tec0 0118
General Disclaimer of the EC website:	https://ec.europa.eu/info/legal-notice_en
Short Description:	
Code:	tec001 18