

EUROPEAN COMMISSION DIRECTORATE-GENERAL JRC JOINT RESEARCH CENTRE Institute for Prospective Technological Studies (Seville) Sustainable Production and Consumption

1st Meeting of the AHWG for the Development of Ecolabel and Green Public Procurement Criteria for Hydronic Central Heating Systems

Sevilla, 28 June 2011

Agenda

1.	Opening and welcome – Tour de table	09:30 - 10:00
	Political objectives of Ecolabel and Green Public Procurement	
2.	Ecolabel and Green Public Procurement criteria – Process description	10:00 - 10:15
3.	Product group scope and market analysis – Presentation followed by discussion	10:15 - 10:45
	Coffee break	10:45 - 11:00
4.	Background information on hydronic central heating systems – Presentation followed by discussion	11:00 - 12:00
5.	Process leading to criteria areas for hydronic central heating systems + Common benchmark approach – Presentation followed by discussion	12:00 - 13:00
	Lunch break	13:00 - 14:15
6.	Energy efficiency and GHG emissions – Presentation followed by discussion	14:15 – 15:30
7.	Other air emissions and noise - Presentation followed by discussion	15:30 - 16:00
	Coffee break	16:00 - 16:15
8.	Design of materials - Presentation followed by discussion	16:15 – 16:45
9.	Corporate criteria - Presentation followed by discussion	16:45 – 17:15
10.	Hydronic central heating systems and Green Public Procurement – Discussion contribution	17:15 – 17:30
11.	Conclusions and close of the workshop	17:30 - 17:45

	ipts
Seville 28-06-2011	4
<u>Scope</u> : Hydronic central heating systems <u>Motivation</u> : High environmental relevance of this product group	
 Energy consumption in buildings accounts for ~40% of the total primary consumption in the EU-27 (of about 76 700 PJ, 2005) 	energy
 A large fraction of the primary energy consumed in buildings is used for cooling: Residential buildings: this fraction is 60-70% Considering all kinds of buildings, on average, this fraction is 50-60% 	heating and
 This means that <u>20-30% of the total primary energy consumption in the E in the heating and cooling of buildings (mostly heating)</u>, that is, roughly year (this quantity is equal to total energy used for transport in the EU) 	<u>EU-27 is used</u> 20 000 PJ per
 Hydronic CH systems represent ~86% of the total use-phase primary energy consumption by heating systems in the EU-27, and therefore account for environmental impact of all heating systems as a whole 	ergy r most of the
 Because of large energy consumption for heating in residential, commer industrial buildings, there is a high potential for saving due to Ecolabel a criteria 	rcial and and GPP

			Technological Budie
eville 28-06-2011			
Technology	Fuel	Nominal power input	Working principle
Gas/oil boiler	Gas (natural or propane) or oil	4-400 kW	Combustion
Biomass boiler	Biomass (logs or pellets)	4-400 kW	Combustion
Heat pump boiler	Electricity	4-50 kW (indicatively)	Electric compressor, driving a vapour cycle
	Gas (possibly in combination with waste heat and/or solar heat)		Gas driven engine, driving a compressor for a vapour compression cycle Gas-fired combustion, driving a sorption process
Cogeneration boiler	Gas (natural or propane) or oil (including bio-oil)	4-400 kW	Micro: external combustion (Stirling engine) Mini: internal combustion (pistor engine driving a generator) Other: fuel cells, based on electrochemical principles
Solar thermal	Solar energy in combination with electric energy for pumps/controls (needs other heat generator to fulfil heating demands in all circumstances)	Not applicable (sized depends on location, budget and application)	Capturing and storage of solar irradiation

		Sale	es				ipts		
Seville 28-06-2011									10
Product group	Unit	1990	1995	2000	2005	2010	2015	2020	2025
Central	in '000 units	4 765			6 989	7 374			8 900
heating boilers									
Solid fuel 🖽	in '000 units	288	220	200	250	436	367	325	296
- 50% of which are biomass boilers	in '000 units	140	120	100	150	250	300	300	280
Heat pumps	in '000 units				250	490	1 000		
Cogeneration	in '000 units					20	140	300	
Solar heating	In '000 m ²	42,9	71,4		2 100				

				Stoc	ĸ			ipts	
Seville 28-06-2011								11	
Product group	Unit	1990	1995	2005	2010	2015	2020	2025	
Boilers	in '000 units	74 660	86 236	10 9709	12 0975	13 1058	14 0638	15 0734	
Solid fuel boilers	in '000 units	8 864		6 500	+/- 8 000				
- of which biomass (50%)	in '000 units	4 400		3 250	4 000				
Heat pumps	in '000 units				1 400 🔟				
Cogeneration	in '000 units				38	498	1 658		
Solar heating	In '000 m²				31 625				

	Market trends	ipts
Seville 28-06-2011		12
Product mix, under "	a business as usual" scenario:	
•The trend towards wal within that a <u>marked sl</u> introduction of additio	I hung boilers is expected to continue in the hift towards condensing boilers, even withon nal legislation	long term, and ut the
•The share of floor stan and a similar trend tow	nding boilers (including and jet burner) is ex vards condensing is likely to continue	pected to fall,
• <u>Biomass boilers have on the expect that this grow</u> ceiling" to the penetral requirements in terms	experienced a "revival" over the last few yea wth will continue to some extent, although a tion of this type of boilers is posed by the cu of storage and fuel supply	ars, reasonable "natural umbersome
• <u>Electric boilers</u> are exp particularly related to o	pected to maintain their marginal position, a overall energy policy decisions	nd their <u>future is</u>
• <u>Sales of heat pumps a</u> very difficult to evaluat conservative.	<u>re expected to grow</u> , although the pace of th te. It is possible that the forecast presented	is growth is could be

VHK for IPTS, Sevilla 28.6.2011

BaseCases Comparison (normalised)																	
	Resources						emissions	(to soil	emissions	to air						emissions water	to
BASE CASES	materials disposed	materials recycled	GER total	elec. (as prim.)	process water	cooling water	non haz. waste	haz./incin. waste	GHG	AP	voc	POP	нм	РАН	PM	нм	EP
	kg	kg	GJ	GJ	m3	m3	kg	kg	tCO2 eq.	kgSOx	kg	mg i-Teq	g Ni	g	kg	g Hg/20	g PO4
gas/oil M	7	39	744	42	3	110	119	6	42	27	1	1	2	0	2	1	13
gas/oil XXL	3	34	704	41	3	110	60	2	43	37	1	0	1	0	1	0	3
small manual biomass	20	321	1086	15	2	26	1114	2	7	147	8	125	54	277	270	2	68
small automatic biomass	12	223	1377	15	1	31	606	1	3	124	3	329	75	258	48	1	68
medium autom. biomass	3	38	888	6	1	13	464	1	1	84	2	123	42	213	39	0	16
7 kW electric heat pump	37	243	638	621	49	1630	1336	33	30	169	0	10	16	3	14	11	131
cogeneration	21	113	542	-369	-31	-989	-132	6	34	-68	1	1	-3	0	0	0	40
gas boiler + SOLAR	36	217	669	69	5	180	889	26	36	38	1	3	14	3	9	10	212
gas boiler HYBRID HP	13	87	510	297	19	790	556	15	25	82	0	4	7	1	8	3	54
gas bolies HYBRID HP 13 87 510 297 19 790 556 15 25 82 0 4 7 1 8 3 54																	
					,	VHK for	IPTS, Se	evilla 28.6	.2011							1	2

	ECOREPORT RESULTS FOR Hydronic Central Heating Systems											
Seville 28-06-2011 4												
	Resource	Resources use emissions (to soil)										
<u>BASE CASES</u>	materials disposed	materials recycled	GER total	elec. (as prim.)	process water	cooling water	non-haz. waste	haz./incin. waste				
	kg	kg	GJ	GJ	m ³	m ³	kg	kg				
gas/oil boiler (M)	7	39	744	42	3	110	119	6				
gas/oil boiler (XXL)	3	34	704	41	3	110	60	2				
small manual biomass	20	321	1086	15	2	26	1114	2				
small automatic biomass	12	223	1377	15	1	31	606	1				
medium autom. biomass	3	38	888	6	1	13	464	1				
7 kW electric heat pump	37	243	638	621	49	1630	1336	33				
cogeneration	21	113	542	-369	-31	-989	-132	6				
gas boiler + solar	36	217	669	69	5	180	889	26				
gas boiler + heat pump	13	87	510	297	19	790	556	15				

Seville 28-06-2011						ļ	ļ		5
	emissions	to air						emission water	is to
ASE CASES	GHG	АР	voc	РОР	нм	PAH	РМ	нм	EP
	tCO ₂ eq.	kg SOx	kg	mg i-Teq	g Ni	g	kg	g Hg/20	g PO ₄
as/oil boiler (M)	42	27	1	1	2	0	2	1	10
as/oil boiler (XXL)	42	27	1	1	2	0	2	1	13
mall manual biomass	43	37	1	0	1	0	1	0	3
mall automatic biomass	7	147	8	125	54	277	270	2	68
	3	124	3	329	75	258	48	1	68
hedium autom. biomass	1	84	2	123	42	213	39	0	16
kW electric heat pump	30	169	0	10	16	3	14	11	131
ogeneration	34	-68	1	1	-3	0	0	0	40
as boiler + solar	36	38	1	3	14	3	9	10	212
as boiler + heat pump	25	82	0	4	7	1	8	3	54

Seville 28-06-2011 8							
	Oil boilers	Gas boilers	Biomass boilers	Heat pumps	Cogeneration		
Ecodesign implementing measures	x	x		x	x		
Energy label implementing measures	x	x		x	x		
EU Ecolabel				x			
Blauer Engel		x	x	x	x		
Nordic Swan			x	x			
Austrian Ecolabel			x				
GPP	x	x	x	x	x		

EUROPEAN COMMISSION	ipts interesting
Seville 28-06-2011	14
Boilers BOILERS • Low-emission and Energy-saving Gas-fired Calorific-Value Heating Devices (RAL-UZ 61) • Wood pellet boilers (RAL-UZ 112)	
 <u>HEAT PUMPS</u> Energy-Efficient Heat Pumps using Absorption and Adsorption Technology or operating by use of Combustion Engine-Driven Compressors (RAL-UZ 118) Energy-Efficient Heat Pumps using an Electrically Powered Compres (RAL-UZ 121) 	sor
COGENERATION Small-Scale Gas-Fired Cogeneration Modules (RAL-UZ 108) Small-Scale Liquid-Fired Cogeneration Modules (RAL-UZ 109) 	

EUROPEAN COMMISSION		Common be	enchmark approach
Seville 28-06-2011			24
	Energy efficiency (heat output/primary energy input)	g CO2/kWh heat output	
gas/oil M	0,86	236,44	• A weighted combination of energy efficiency and GHG
gas/oil XXI	0.91	242 07	emissions
small manual	0,01	2 :2,01	
biomass boiler	0,59	39,41	
small automatic biomass boiler	0,46	16,89	Feedback received:
hiomass boiler	0.72	5.63	<u>OHO emissions intestiona</u> =
7 kW electric heat	1.00	168 89	200 g CO_{2} kwn heat output
r	1,00	100,00	Efficiency threshold = 80%
cogeneration-boiler	1,18	191,40	
gas boiler + solar	0,96	202,66	
gas boiler + heat pump	1,25	140,74	

EUROPEAN COMMISSION Seville 28-06-2011			Institute for P Prospective Institutional factor
MANDATORY CRITER	IA C	OPTIONAL CRITERIA	4
Performance of any given teo shall be better than a thresho is a weighted combination of efficiency and GHG emission	chnology T old which e energy e s n o	he remaining criteria (othe missions, noise, design of tc.) are optional, and a min umber of points must be e rder to obtain the Ecolabe	er air materials imum arned in I
Feedback received: The r central heating systems	esult of the E could be one	colabel/GPP criteria for hydro single document with:	nic
•Main body: the common	benchmark t	hreshold requirement	
Appendix: With different specific heating technol	sections add	Iressing voluntary criteria for	different

Sevile 20-00-2011	
Technology	Seasonal space heating energy efficiency
4-15 kW rated input fossil fuel (oil/gas) boilers	75%
15-70 kW rated input fossil fuel (oil/gas) and cogeneration boilers	86%
70-400 kW rated input fossil fuel (oil/gas) boilers	88% (at full rated input) 96% (at 30% rated input)
Heat pump* with GWP > 150	86%
Heat pump* with GWP < 150	73%
Low-T heat pump with GWP > 150	111%
Low-T heat pump with GWP < 150	94%

Type of heat pump: heat source/heat sink	Min. COP (electric heat pump)	Min. COP (gas heat pump)
Air/water Min. PER: 1,24	3,10	1,36
Brine/water Min. PER: 1,72	4,30	1,89
Water/water Min. PER: 2,04	5,10	2,24

	ipts
Seville 28-06-2011	10
Blauer Engel for boilers	
GAS BOILERS	1111
 Max. capacity (nominal thermal output) = 70 kW 	(A)
 Emit much less NOx and CO, have higher energy efficiency, hat 	ve 🤎
lower auxiliary power demand	Contract Contract (Contract Contract)
Max. limits for NOx and CO	
Efficiency ("nominal utilization ratio") requirement:	
 100% for 10 kW, and 101% for 70 kW, at T = 75/60 °C 	
 103% for 10 kW, and 104% for 70 kW, at T = 40/30 °C 	
Requirement for auxiliary power demand	
····	
WOOD PELLET BOILERS	
• Max thermal output = 50 kW	
Euel: Only wood pellets	
 Min_officiency – 90% whether full or partial load 	
$\frac{1}{1000} = \frac{1}{1000} = 1$	0
• Limits for NOX, CO, and other pollutants (total carbon and dus	()

INC ADDEAN COMMISSION		ipt
ille 28-06-2011		1
	UK - SEDBUK	
Energy	efficiency limits	
Band	SEDBUK Range	7
Α	90% and over	SEDBUK Rating
В	86% - 90%	A 90.0% - 91.3% B 86.0% - 90.0%
С	82% - 86%	C 82.0% - 96.0%
D	78% - 82%	E 74.0% - 78.0%
E	74% - 78%	F 70.0% - 74.0%
F	70% - 74%	
G	Below 70%	

1. Energy efficiency	Criteria	1					Standar
							ds
Gas condensing	For 10	kW	Nominal utilisation ratio)	Nominal utilisation ra	itio	DIN
boilers			must not fall below 1009	%	must not fall below 1	03%	4702
(<70 kW)			at temp 75/60°		at temperatures 40/3	0°	
	For 70k	W	Nominal utilisation ratio)	Nominal utilisation ra	itio	DIN
			must not fall below 1019	%	must not fall below 1	04%	4702
	N 10 100		at temp 75/60°		at temp 75/60°		CEN 202
Gas bollers and oll	Y=(1/60	J)Z +	b, where b is	1			CEN 303
Dollers (<120 kW)	Fuel	B	accurament at nominal	N.4	loosuroment at low		and 204
		off	foct	of	fect		
	Liqui	en		ei			
	d	91	,77	89	9,77		
	Gas	85	,83	93	3,83		
Solid fuel biomass	Manua	l fee	d: nk = 73 + 6log Qn, at fu	ill lo	bad		
boilers (<300 kW)	Automa	atic	feed: nk = 75 + 6log Qn, at	t ful	ll load and part load		

EUROPEAN COMMISSION Minimum energy efficiency criteria (C = "condensing") ipt							
Seville	28-06-2011				19		
	Oil boiler	Gas boiler	Biomass boiler	Heat pump	Cogeneration		
ED impl. Meas.	75% (4-15 86% (15-7 88% (full I 96% (30%	kW input) 0 kW input) oad, 70-400 kW input) load, 70-400 kW input)		86% (GWP > 150) 73% (GWP < 150) 111% (GWP > 150; low T) 94% (GWP < 150; low T)	86% (15-70 kW input)		
Energy label impl. meas.	> 130% (A 114-130% 98-114% (90-98% (A	+++) (A++) A+))		> 155% (A+++) 139-155% (A++) 123-139% (A+) 115-123% (A)	> 130% (A+++) 114-130% (A++) 98-114% (A+) 90-98% (A)		
EU Ecolabel				124% (air/water) 172% (brine/water) 204% (water/water)			
Blauer Engel		100-104% (70 kW)	90% (50 kW)	Gas: 120% Electric: None	87-89% (gas) 83-85% (liquid)		
Nordic Ecolabel			83-85% (50 kW) 88-90% (300 kW)	80% (if ref. not HFC) 90% (if ref. HFC, GWP < 1000) 92% (if ref. HFC, GWP < 2000)			
Austrian Ecolabel			84% (50 kW, man.) 90% (300 kW, man.) 90% (autom.)				
GPP	94% (non-C, 120 kW)	101% (C, 70 kW) 88% (C, 120 kW)	83-85% (50 kW) 88-90% (300 kW)	124% (air/water) 172% (brine/water) 204% (water/water)	75-80%		

EUROPEAN COMMISSION	Ene	ipts			
Seville 28-06-2011					21
	Oil boilers	Gas boilers	Biomass boilers	Heat pumps	Cogeneratio
Ecodesign impl. measures	EN 304	EN 15502-1		EN 14825	EN 50465
Energy label impl. measures	EN 304	EN 15502-1		EN 14825	EN 50465
EU Ecolabel				EN 14511:2004 (elec- and gas-driven) - COP EN 12309-2:2000 (gas absorption) - COP	
Blauer Engel		DIN 4702 DIN 3368 DIN EN 677	DIN 18894 DIN EN 14784	DIN 4702 (gas) EN 255/EN 14511 (elec)	DIN 3046
Nordic Ecolabel			EN 303-5	EN 14511:2004	
Austrian Ecolabel			EN 303-5		
GPP	EN 304	DIN 4702, DIN 3368, DIN EN 676, EN 303	EN 303-5	EN 14511 EN 12309-2	Ref. to cogeneration directive

Sources of GHG emissions	Possible Ecolabel/GPP criteria
GHG (mainly CO ₂) emissions from primary energy consumption	• g CO ₂ / kWh heat output (possible)
Leakage of refrigerant in heat pumps	 Max. limit for the global warming potential (GWP) of the refrigerant Energy efficiency dependent on GWP Controlling leakage of refrigerant

JILU COMMISSION 5-2011	s in Plauer I		stering to the
WP ₁₀₀ < 15		Linger gas ne	at pumps
Refrigerant (code designation)	Refrigerant (chemical name)	GWP ₁₀₀	
R 717	Ammonia	0	
R 290	Propane	3	
	Water	0	
R 744	Carbon dioxide	1	
R 1270	Propylene	3	

EUR	JRC JPEAN COMMISSION			<i>ipts</i>
GH	G emissions in	Blauer Eng	el electric heat pum	26 ps:
The	TEWI approacl	h <u>TEWI limits f</u>	or electric heat pumps in Blaue	<u>r Engel</u>
	Type of heat pump	Thermal output (kW)	TEWI value (flow temperature 35°C) [kg CO ₂]	
	Water-to-Water	0 - 20	32 500	
		> 20	65 000	
	Brine-to-Water	0 - 20	39 000	
		> 20	78 000	
	Air-to-Water	0 - 20	48 000	
		> 20	96 000	
	Exhaust air-to-Water	0 - 20	43 000	
		> 20	86 000	

	EUROPEAN COMMISSION		ipts	
	Seville 28-06-2011		27	
GH	G emissior	ns in Blauer Engel electric heat pur	nps – GWP value) S
	Refrigerant (Code designation)	Refrigerant (Chemical designation)	Global Warming Potential (GWP100)	
	R 134a	Tetrafluoroethane	1300	
	R 290	Propane	3	
	R 404A	Mixture of trifluoroethane, tetrafluoroethane, pentafluoroethane	3260	
	R 407C	Mixture of difluoromethane, tetrafluoroethane, pentafluoroethane	1526	
	R 410A	Mixture of difluoromethane, pentafluoroethane	1725	
	R 417A	Mixture of butane, tetrafluoroethane, pentafluoroethane	1965	
	R 744	Carbon dioxide	1	
	R 1270	Propene (propylene)	3	

Seville 28-06-201	1				28
	Oil boilers	Gas boilers	Biomass boilers	Heat pumps	Cogeneration
Ecodesign impl.measures	None	None		•Efficiency dependent on GWP of refrigerant	None
Energy label impl.measures	None	None		None	None
EU Ecolabel				•Limit for GWP of refrigerant •Efficiency dependent on GWP of refrigerant	
Blauer Engel		None	None	•TEWI limit	None
Nordic Ecolabel			None	•Limit for GWP of refrigerant •Efficiency dependent on GWP of refrigerant	
Austrian Ecolabel			None		
GPP	None	None	None	•Limit for GWP of refrigerant •Efficiency dependent on GWP of refrigerant	None

	s for the GWP of refrigerant (heat pumps) $\frac{1}{2}p_{S}^{t}$
Seville 28-06-2011	29
	GWP of refrigerant over 100 year period, GWP ₁₀₀
Ecodesign implementing measures	No GWP limit Efficiency requirement: lower efficiency allowed for GWP < 150
Energy label implementing measures	None
EU Ecolabel	GWP < 2000 If GWP > 1000: higher COP efficiency required If GWP < 150 : COP efficiency requirement reduced by 15%
Blauer Engel	<u>GWP < 15</u>
Nordic Ecolabel	GWP < 2000 If GWP > 1000: higher COP efficiency required If GWP < 150 : COP efficiency requirement reduced by 15% If GWP > 100: unit must be leakage-free
GPP	GWP < 2000 If GWP > 1000: higher COP efficiency required If GWP < 150 : COP efficiency requirement reduced by 15%

EUROPEAN COMMISSION NOx emissions in product policy schemes $\frac{i}{i} p \frac{f}{s}$						
Seville 28-06-	2011				5	
	Oil boilers	Gas boilers	Biomass boilers	Heat pumps	Cogeneration	
Ecodesign impl. measures	120 mg/kWh	70 mg/kWh		None	120 mg/kWh (gas) 200 mg/kWh (liq)	
Energy label impl.meas.	None	None		None	None	
EU Ecolabel				None		
Blauer Engel		60 mg/kWh (34 ppm)	150 mg/m ³	60-250 mg/kWh, 250-2500 mg/m ³ (gas) Electric: None	250 mg/m³ (gas) 2500 mg/m³ (liq)	
Nordic Ecolabel			340 mg/m ³	None		
Austrian Ecolabel			100-120 mg/MJ (360-432 mg/kWh) (150-180 mg/m ³)			
GPP	120 mg/kWh	60 mg/kWh (C) 70 mg/kWh (non-C)	340 mg/m ³	None	None	

Seville 28-06-2011					6
	Oil boilers	Gas boilers	Biomass boilers	Heat pumps	Cogeneration
Ecodesign impl. meas.	None	None		None	None
Energy label impl. meas.	None	None		None	None
EU Ecolabel				None	
Blauer Engel		None	5 mg/m ³	Gas: None Electric: None	Gas: None Liquid: None
Nordic Ecolabel			25-70 mg/m ³	None	
Austrian Ecolabel			3-5 mg/MJ (11-18 mg/kWh) (4,5-7,5 mg/m ³) (full load) 3-10 mg/MJ (11-36 mg/kWh) (4,5-15 mg/m ³) (part load)		
GPP	None	None	25-70 mg/m ³	None	None

Seville 28-06-2011 7								
	Oil boilers	Gas boilers	Biomass boilers	Heat pumps	Cogeneration			
Ecodesign IM	None	None		None	None			
Energy label	None	None		None	None			
EU Ecolabel				None				
Blauer Engel		50 mg/kWh (46 ppm)	90 mg/m ³ (full load) 200 mg/m ³ (part ld)	50-300 mg/kWh, 300 mg/m ³ (gas) Electric: None	300 mg/m³ (liq) 300 mg/m³ (liq)			
Nordic Ecolabel			400 – 2000 mg/m ³	None				
Austrian Ecolabel			60-150 mg/MJ (216-540 mg/kWh) (90-225 mg/m ³) (full) 135-300 mg/MJ (486-1080 mg/kWh) (203-450 mg/m ³ (30%)					
GPP	20 mg/kWh	50 mg/kWh (C) 20 mg/kWh (non-C)	400 – 2000 mg/m ³	None	None			

Seville 28-06-2011					8
	Oil boilers	Gas boilers	Biomass boilers	Heat pumps	Cogeneration
Ecodesign	None	None		None	None
Energy label	None	None		None	None
EU Ecolabel				None	
Blauer Engel		None	20 mg/m ³ (full load)	Gas: 150 mg/m ³ Electric: None	Gas: None Liquid: 150 mg/m ³
Nordic Ecolabel			40-70 mg/m ³	None	
Austrian Ecolabel			15-30 mg/MJ (54-108 mg/kWh) (23-45 mg/m ³) (full load)		
GPP	None	None	40-70 mg/m ³	None	None

EUROPEAN COMMISSION	Crite	ria on other a	air emissio	ons – Test methods	ipts
Seville 28-06-2011					9
	Oil boilers	Gas boilers	Biomass boilers	Heat pumps	Cogeneration
Ecodesign impl. measures	EN 304	EN 15502-1		EN 14825	EN 50465
Energy label impl. measures	EN 304	EN 15502-1		EN 14825	EN 50465
EU Ecolabel				EN 14511:2004 (elec- and gas-driven) - COP EN 12309-2:2000 (gas absorption) - COP	
Blauer Engel		DIN 4702 DIN 3368 DIN EN 677	DIN 18894 DIN EN 14784	DIN 4702 (gas) EN 255/EN 14511 (elec)	DIN 3046
Nordic Ecolabel			EN 303-5	EN 14511:2004	
Austrian Ecolabel			EN 303-5		
GPP	EN 304	DIN 4702, DIN 3368, DIN EN 676, EN 303	EN 303-5	EN 14511 EN 12309-2	Ref. to cogeneration directive

Sovillo 28-06-2011					Sectioningical Studies
Seville 28-00-2011					
	Oil boilers	Gas boilers	Biomass boilers	Heat pumps	Cogeneration n
Ecodesign implementin g measures	None	None		60/65 dB(A); for <6 kW rated capacity	None
				65/70 dB(A); for > 6 kW rated capacity	
Energy label implementin g measures	None	None		None	None
EU Ecolabel				None	
Blauer Engel		None	None	None	None
Nordic Swan			None	Noise must be tested and reported	
Austrian Ecolabel			None		
GPP	None	None	None	None	None

