

## **Joint Research Centre**

#### The European Commission's in-house science service



#### www.jrc.ec.europa.eu

Serving society Stimulating innovation Supporting legislation





IE – Petten, The Netherlands Institute for Energy



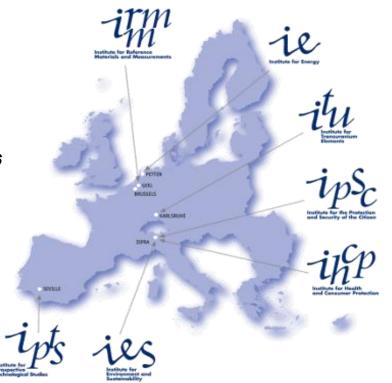
IRMM – Geel, Belgium Institute for Reference Materials and Measurements



ITU – Karlsruhe, Germany Institute for Transuranium Elements

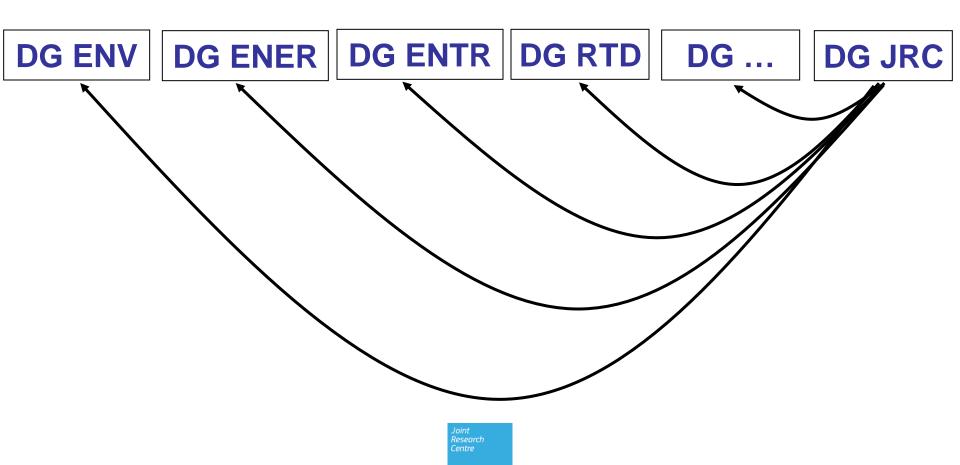
IES/ IHCP/ IPSC – Ispra, Italy Institute for Environment and Sustainability




Institute for Health and Consumer Protection

Institute for the Protection and Security of the Citizen




<u> IPTS – Sevilla, Spain</u>

Institute for Prospective Technological Studies





# *Joint Research Centre in the context of the European Commission:*





## **Activities in support of Product Policy**

IPTS supports the development and implementation of environmental product policies, amongst them the EU Ecolabel Regulation, the Green Public Procurement Communication, the Energy Related Products Directive and the Energy Labelling Directive.

This includes the techno-economic research as well as the operational management particularly of the stakeholder consultation.





## Ecodesign for Commercial Refrigeration ENER LOT 12

Hans Moons (JRC-IPTS) Alejandro Villanueva (JRC-IPTS) Oliver Wolf (JRC-IPTS)

Ewout Deurwaarder (DG Energy)

23 April 2013









#### Ecodesign process



#### 1. Product study completed

A study for each product group examines market data, technological status and other relevant issues.

When the study is completed, the Commission formulates a proposal (working document) taking the findings and recommendations of the study into account.

#### 2. Consultation Forum and proposal

The proposal (working document) from the Commission is communicated to experts, stakeholders and Member States. These parties meet in the Eco-design Consultation Forum to discuss the proposal.

Based on the Consultation Forum and the impact assessments, the Commission formulates a draft regulation.

#### 3. Draft regulation

When the Commission has formulated a draft regulation, it is submitted to the Ecodesign Regulatory Committee, which is composed by one representative from each EU Member State.

#### 4. Approved by Regulatory Committee

After the proposed regulation is adopted by a majority of the Regulatory Committee (the voting power of each Member State is weighted based largely on each state's population) it is sent to the European Parliament for scrutiny. It is also notified to the World Trade Organisation.

#### 5. Final regulation

The regulation is formally adopted by the Commission and published in the Official Journal of the European Union (OJ) before it enters into force.

The most likely legal form of the implementation is "regulation", which means that it takes direct legal effect in all Member States.



#### Where we come from...

- BIO IS study 2007, Wuppertal Impact Assessment 2010
- Desk research
- Questionnaire (+ follow-up phone calls)
- Plant visits:
  - Efficold: beverage coolers
  - Bonnet-Névé: remote display cabinets
  - Koxka: remote and plug-in display cabinets
  - Coca-Cola: beverage coolers and vending machines
  - Jofemar: vending machines
  - Recilec: end-of-life treatment, recycling
  - Cemafroid: Test labs, expert in cold and refrigeration
- Back2back meetings:
  - Eurovent association
  - European Vending Association
- Background document





#### Where are we going to...

- Collect feedback (24 May 2013)
- Possible second questionnaire
- Next Technical Working Group meeting: end 2013
- Final technical report

|                                    |      |     |      |            |                 | · e      |            | ,    | , a  | · · · · · | ,          | , n | · · · · | ,          | 1 1  |     |
|------------------------------------|------|-----|------|------------|-----------------|----------|------------|------|------|-----------|------------|-----|---------|------------|------|-----|
| Timing                             | 2012 |     | 2013 |            | 1               | <u> </u> | <u>ا ا</u> |      |      |           |            |     |         |            | 2014 |     |
|                                    | Nov  | Dec | Jan  | Feb        | Mar             | Apr      | May        | June | July | Aug       | Sep        | Oct | Nov     | Dec        | Jan  | Feb |
| Steps and content                  |      |     |      | <u>ا</u> ا |                 |          |            |      |      |           |            |     |         |            |      |     |
| Revision/udate preparatory work    |      |     |      |            |                 |          | ۱ <u> </u> |      |      |           |            |     |         |            |      |     |
| Establishment of TWG               |      |     |      |            |                 |          |            |      |      |           |            |     |         |            |      |     |
| 1st stakeholder meeting (kick-off) |      |     |      | ·۱         |                 |          |            |      |      |           |            |     |         |            |      |     |
| Collection/submission of TWG info  |      |     |      | ۱ <u> </u> |                 |          |            |      |      |           |            |     |         |            |      |     |
| First draft report preparation     |      |     |      |            |                 |          |            |      |      |           |            |     |         |            |      |     |
| Second stakeholder meeting         |      |     |      |            |                 |          |            |      |      |           | <u> </u>   |     |         | ۱ <u> </u> |      |     |
| TWG comments                       |      |     |      |            |                 |          |            |      |      |           | T          |     |         |            |      |     |
|                                    |      |     |      |            |                 |          |            |      |      |           | ۱ <u> </u> |     |         | Γ <u> </u> |      |     |
| Deliverables                       |      |     |      |            |                 |          |            |      |      |           |            |     |         |            |      |     |
| Website                            |      |     |      | <u> </u>   |                 |          |            |      |      |           | Γ <u></u>  |     |         |            |      |     |
| Revised/updated preparatory study  |      |     |      |            |                 |          |            |      |      |           |            |     |         |            |      |     |
| First draft report                 |      |     |      |            |                 |          |            |      |      |           | $\square$  |     |         |            |      |     |
| Final technical report             |      |     |      |            |                 |          |            |      |      |           |            |     |         |            |      |     |
|                                    |      |     |      | R          | oint<br>esearch |          |            |      |      |           |            |     |         |            |      |     |
|                                    |      |     |      | Ċ          | Centre          |          |            |      |      |           |            |     |         |            |      |     |



Aim of today's meeting:

- Present status of knowledge
- Discuss openly
- $_{\odot}$  Identify datagaps and where to find this data

How?

- Refresh info in background document (questions, comments)
- Discuss key issues
- Task-by-task, followed by wrap-up









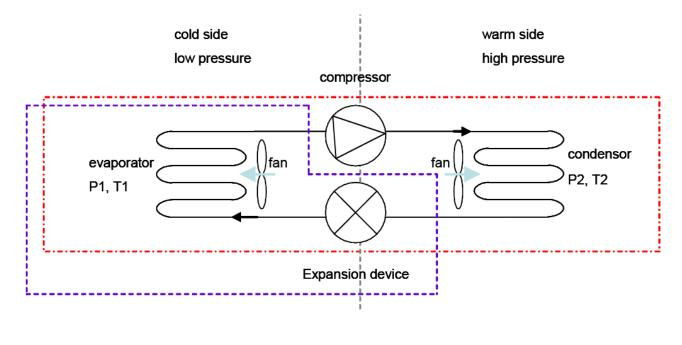
#### Definition

A commercial refrigerated cabinet is a

- refrigerated appliance
- intended for the storage and display for merchandising

• at specified temperatures below the ambient temperature, of chilled and/or frozen products<sup>[1]</sup>

 accessible directly through open sides or via one or more doors, and/or drawers


 designed for the use by commercial, institutional or industrial facilities

 $^{\amalg}$  Typically food and drinks, but also other perishable goods like flowers, live bait, or medicines where refrigeration is used to extend the lifetime.





- Plug-in display cabinets
- Remote display cabinets: remote cooling system (compressor and condensor) is NOT taken into account



Cabinet case for plug in refrigerated cabinets and cold vending machine case

Cabinet case for remote refrigerated cabinets

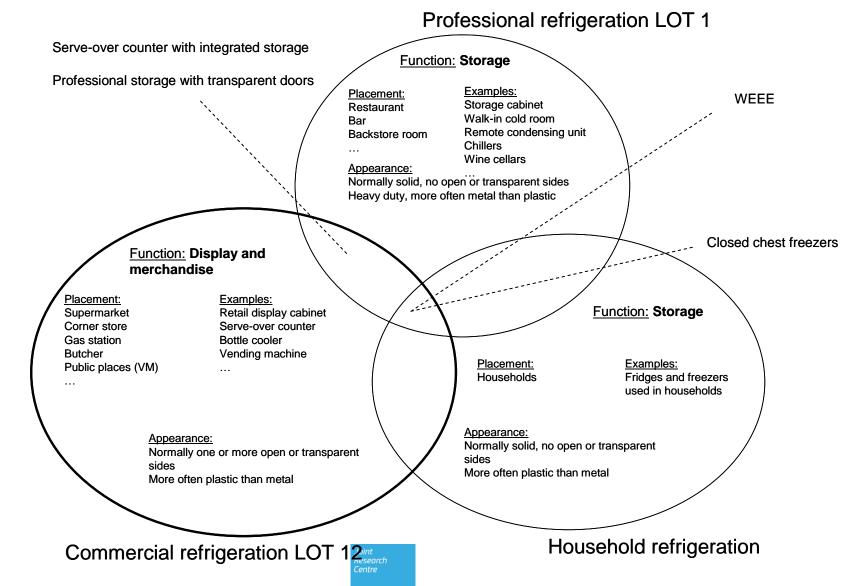






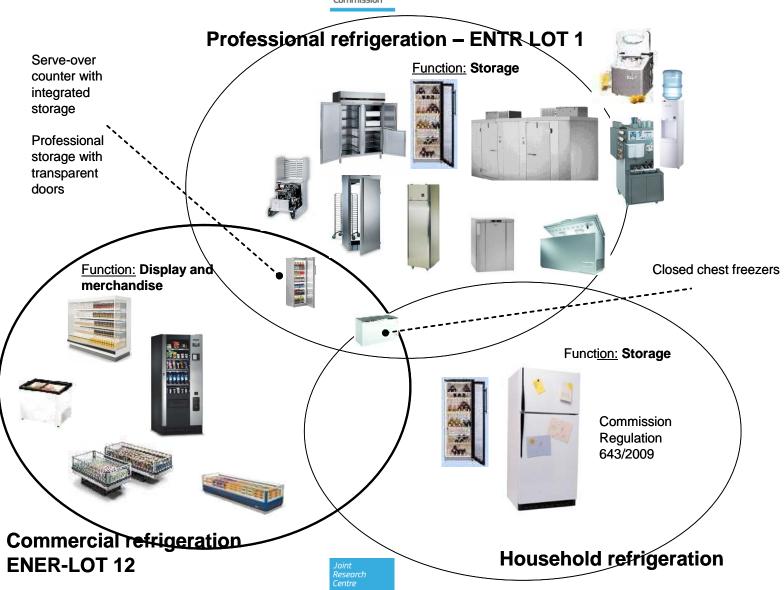









Joint Research Centre




#### Scope











#### **Excluded**?

- closed chest freezers used for commercial purposes using product images
- minibars
- wine cellars
- 'production' devices such as ice-cream makers, icemakers, chilled water dispensers
- gelato display cabinets







- Do you agree with the definition of commercial refrigeration proposed above?
- Are there any additional definitions that you find necessary?
- Do you agree with the scope proposed above? Are there any appliances that in your view should be included/excluded?





## **Standards and legislation**





#### Relevant EU legislation related to commercial refrigeration

| Domain               | LEGISLATION                                                            |
|----------------------|------------------------------------------------------------------------|
| Environment          |                                                                        |
|                      | Waste Electrical and Electronic Equipment Directive 2012/19/EU         |
| Entire product       | Restriction of the use of certain Hazardous Substances in electric and |
|                      | electronic equipment Directive 2011/65/EC                              |
|                      | Ozone Depleting Substances Regulation 1005/2009                        |
| Refrigerating Fluids | Fluorinated Greenhouse Gases Regulation 842/2006 (update in            |
|                      | progress)                                                              |
| Shipment as waste    | Waste Shipment Regulation 1013/2006                                    |
| Energy               |                                                                        |
| Lighting             | Energy efficiency requirements for ballasts for fluorescent lighting-  |
| Lighting             | Directive 2000/55/EC                                                   |
| Safety               |                                                                        |
| -                    | Machinery Directive 95/16/EC                                           |
|                      | General Product Safety Directive 2001/95/EC                            |
| Entire product       | Low Voltage Equipment Directive 73/23/EEC                              |
| Entire product       | Equipment and protective systems intended for use in potentially       |
|                      | explosive atmospheres Directive 94/9/EC (ATEX)                         |
|                      | Pressure Equipment Directive 97/23/CE                                  |
|                      |                                                                        |





### **Standards and legislation**



Commission

- F-gas regulation, update
- Safety regulations, ATEX and Pressure Equipment Directive
- End-of-Life, WEEE, Waste Shipment Regulation





#### Relevant standards for Lot 12 products

| TYPE              | STANDARD                                                                |
|-------------------|-------------------------------------------------------------------------|
| International Sta | Indards                                                                 |
| Sofoty            | ISO 5149:1993(2004): Mechanical refrigerating systems used for cooling  |
| Safety            | and heating – safety requirements                                       |
|                   | IEC 60335:2012 part 2-75: Household and similar electrical appliances – |
|                   | safety -: Particular requirements for commercial dispensing appliances  |
|                   | and vending machines – part 2-89: particular requirements for           |
|                   | commercial refrigerating appliances with an incorporated or remote      |
|                   | refrigerant condensing unit or compressor                               |
| Enorgy uso        | ISO 23953-2:2005/Amd 1:2012 refrigerated display cabinet – part 2:      |
| Energy use        | classification, requirements and test conditions                        |
| European Stand    | ards                                                                    |
| Safety            | EN378 1:2008+A2:2012: Refrigerating systems and heat pumps – Safety     |
| Salety            | and environmental requirements                                          |





### **Standards and legislation**

**Standards** 

Energy consumption

- ISO 23953, update
- EVA-EMP
- ASHRAE 32.1

Safety measures

- IEC 60335
- EN 378
- ISO 5149





### Questions (safety)

- CO<sub>2</sub> and high pressure. Is there hard evidence that the high pressure can be a real safety concern? What is the exact (if any) legislative barrier for the use of CO<sub>2</sub> at high pressure?
- Hydrocarbons and flammability
  - 150g refrigerant charge limit. Only small-sized plugins feasible? Technical improvements to use HC for bigger plug-in appliances?
  - vending machines. Is it possible to separate product area from refrigerant area? How do others imply safe HC use in vending machines?
- Link between ATEX and standards. Is the 150g limit a guideline or legislation?
- Which standard/legislation limit the introduction of alternative refrigerants?
- Where could standards be changed? Are you aware of any change coming up?



#### **Questions** (energy)

• Which products in the scope are not covered by ISO 23953 to measure energy consumption?

• Are presence detectors and other energy-saving options covered in the ISO 23953 standard, in EVA-EMP?

 Is testing the energy consumption at climate class 3 (25°C, 60%RH) appropriate?

• Could we also use ASHRAE 32.1 for vending machines (if EVA-EMP is not fully consolidated)?



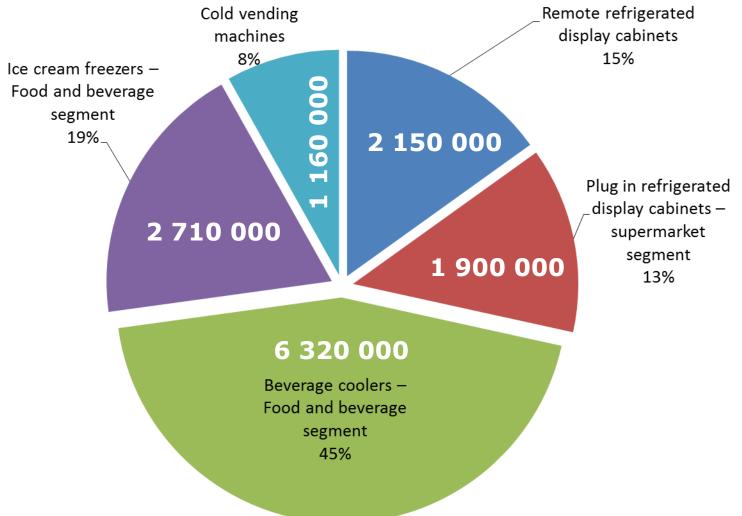






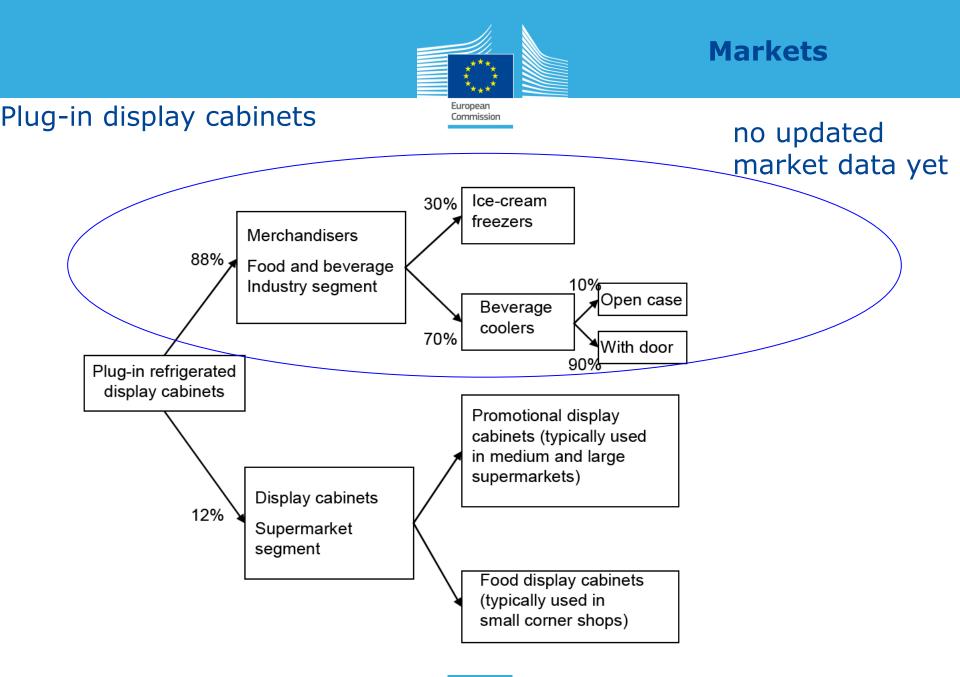
#### **PRODCOM classifications used in Eurostat**

| Description                                                                                                                              | HS/CN reference |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Refrigerated show-cases and counters incorporating a refrigerating<br>unit or evaporator for frozen food storage                         | 8418 50 11      |
| Refrigerated show-cases and counters incorporating a refrigerating unit or evaporator (excluding for frozen food storage)                | 8418 50 19      |
| Deep-freezing refrigerating furniture (excluding chest freezers of a capacity ≤ 800 litres, upright freezers of a capacity ≤ 900 litres) | 8418.50.91      |
| Refrigerating furniture (excluding for deep-freezing, show-cases and counters incorporating a refrigerating unit or evaporator)          | 8418.50.99      |
| Automatic goods-vending machines incorporating heating or<br>refrigerating devices                                                       | 8476[.21 + .81] |


Breakdown level is not detailed enough

Detailed market data is necessary for the Impact Assessment






#### **Stock estimates from industry**





| Rem | <u>note displa</u>                        | y ca | binets                                                   | Euroj<br>Comi        | pean<br>mission |                              |       |       |                                              |                   |
|-----|-------------------------------------------|------|----------------------------------------------------------|----------------------|-----------------|------------------------------|-------|-------|----------------------------------------------|-------------------|
| Ye  | Average El<br>ear estimation<br>sales     |      | Average EU-2<br>estimations of sale<br>extrapolation for | s linear             |                 |                              | Ref.  | BIO I | S, 2007. Euro<br>STOCI                       | ovent Association |
|     | 04 005 00                                 | 4    | 2010                                                     |                      |                 |                              | 2004  |       | 2 032 95                                     |                   |
|     | <b>04</b> 225 884                         |      | 225 884                                                  |                      |                 |                              | 2005  |       | 2 082 60                                     |                   |
|     | <b>05</b> 231 400                         |      | 231 400                                                  |                      |                 |                              | 2006  |       | 2 151 65                                     |                   |
|     | <b>06</b> 239 073                         |      | 239 073                                                  |                      |                 |                              | 2007  |       | 2 207 29                                     |                   |
|     | 07 <u>245 25</u>                          |      | 245 255                                                  |                      | 1               |                              | 2008  |       | 2 266 64                                     |                   |
|     | <b>08</b> 219 723                         |      | 251 849                                                  |                      | 1               |                              | 2009  |       | 2 325 84                                     |                   |
|     | <b>09</b> 224 395<br><b>10</b> 196 488    |      | 258 428<br>265 006                                       |                      |                 |                              | 2010  |       | 2 385 05                                     | 55                |
|     | Product<br>category                       |      | Eurovent classifi                                        | cation               |                 | Average EU<br>pric<br>(in et | се    | g     | % of units<br>in this<br>product<br>category |                   |
|     | Multidecks & semi-verticals               |      | RVC1/RVC2/R                                              | VC3                  |                 | 3437 ±                       | ± 507 |       | 61%                                          |                   |
| L - | - Counters:-<br>service & self<br>service | RHC  | 1/RHC2/RHC7/RHC<br>F7                                    | <b>C8/RHF</b> 1      | /RH             | 3017 ±                       | ± 560 | -+    | 16%                                          | -'                |
|     | Frozen food<br>islands                    | RH   | C3 to RHC6 & RHF                                         | <sup>-</sup> 3 to RH | F6              | 3966 ±                       | ± 718 |       | 13%                                          |                   |
|     | Glass doors &<br>frozen<br>multidecks/SV  | RV   | VF4 & RVC4 + RVF                                         | 1 & RVF              | 2               | <b>5935</b> ±                | 2040  |       | 4%                                           |                   |
|     | Combis                                    | RY   | C1 to RYC4 & RYP                                         | 1 to RY              | F4              | 6779 ±                       | 1187  |       | 6%                                           |                   |



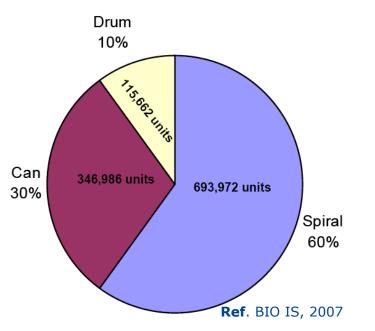
Joint Research Centre



European Commission

# Plug-in display cabinets supermarket segment

|      | Total sales units |
|------|-------------------|
| 2004 | 144 000           |
| 2005 | 154 000           |
| 2006 | 165 000           |
| 2007 | 176 500           |
| 2008 | 189 000           |
| 2009 | 202 000           |
| 2010 | 216 000           |


|      | Total stock |
|------|-------------|
|      | units       |
| 2004 | 720 000     |
| 2005 | 770 000     |
| 2006 | 825 000     |
| 2007 | 882 500     |
| 2008 | 945 000     |
| 2009 | 1 010 000   |
| 2010 | 1 080 000   |

| Product<br>category         | Eurovent classification       | price | % of product<br>category |
|-----------------------------|-------------------------------|-------|--------------------------|
| Multidecks & semi-verticals | IVC1/IVC2/IVC3                | 2225  | 9,3%                     |
| Counters:<br>service & self | IHC1/IHC2/IHC7/IHC8/IHF1/IHF7 | 1845  | 31,0%                    |
| Frozen food<br>islands      | IHC3 to IHC6 & IHF3 to IHF6   | 1855  | 59,7%                    |

Research Centre



### Vending machines



|                               | Total machines, stock20102011 |               |  |  |  |  |  |
|-------------------------------|-------------------------------|---------------|--|--|--|--|--|
|                               |                               |               |  |  |  |  |  |
| Total market vending machines | 3 786 572                     | 3 778 026     |  |  |  |  |  |
| Cold machines                 |                               | 693 986 (18%) |  |  |  |  |  |
| Snack machines                |                               | 799 982 (21%) |  |  |  |  |  |

Ref. European Vending Association

| Year                       | 2000 | 2002 | 2006 | 2008 | 2010 | 2016 | 2020 | 2025 | 2030 |
|----------------------------|------|------|------|------|------|------|------|------|------|
| Assumed market growth rate | 1%   | 0%   | -4%  | -2%  | 0%   | 2%   | 2%   | 2%   | 2%   |



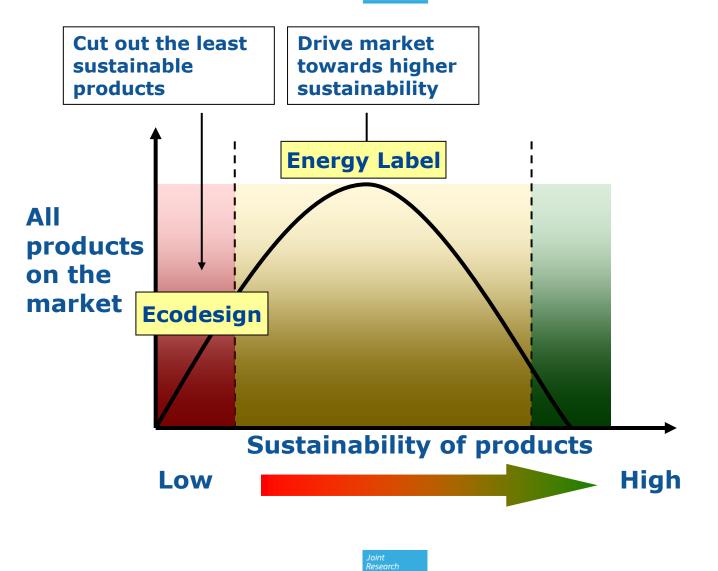


#### Questions

- Up-to-date market data (2006-2012)
  - remote cabinets
  - all plug-ins (supermarket, bottle coolers, icecream freezers, vending machines)
  - historical data 2005-2009 for vending machines
- Stocks and/or annual sales of the refrigerants used in the different main cabinet types
- Market share refrigerant used per cabinet group
- Future sales and stock figures, market forecast, guiding concepts






## **Technologies – Environment – Design**

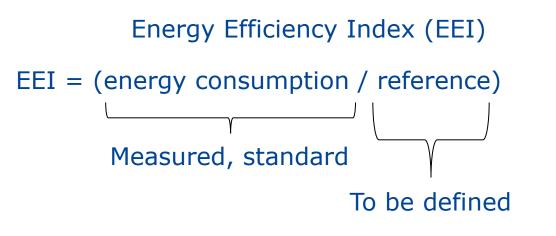
### **Energy**



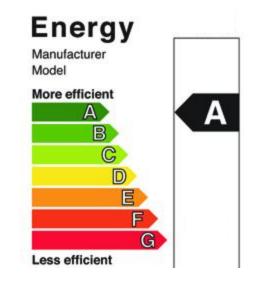









Energy


#### **Energy consumption**

#### Define energy consumption

Discard the worst performing products from the EU market









Energy

### **Proposal** Wuppertal Institute (2010)

## $EEI = (SEC / RSEC) \times 100$

- Open SEC = TEC / Total Display Area RSEC =  $[5.6 + VERT + L + 16 (T_a - T_{mc}) / T_{mc}]$
- Closed SEC = TEC / net volume of the appliance RSEC =  $1.8 \times [5.6 + VERT + L + 16 (T_a - T_{mc}) / T_{mc}]$
- Vending  $RSEC = [1,500 + 16 \times EC]$

with EC = 
$$\sum_{i} V_i \times \frac{T_a - Tmc_i}{Tmc_i}$$

Based on data from: Eurovent Certification program 2008, European Procool project, directly from manufacturers, EVA and Eurovent association

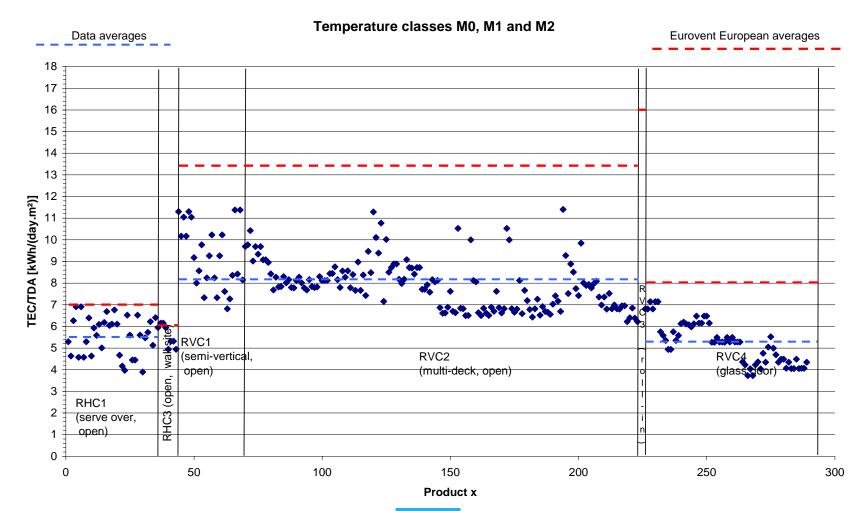

Ref. Impact Assessment, Wuppertal Institute, 2010



## Energy

## **Eurovent - Wuppertal** remote cabinets

Positive means RSEC (Wuppertal) is less strict compared to Eurovent

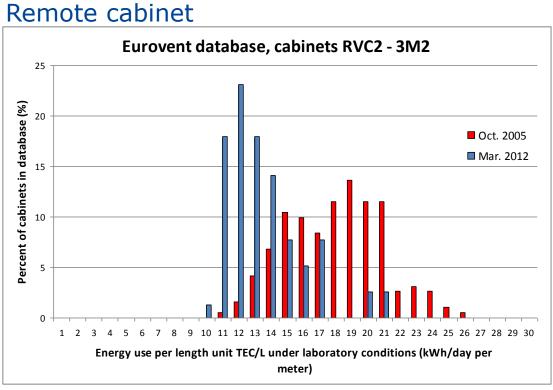







**Remote cabinet data** 

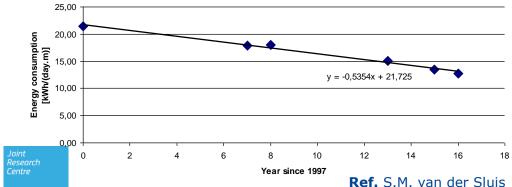
Current Eurovent Certification Program database




Joint Research Centre



#### Energy


## Historical trend

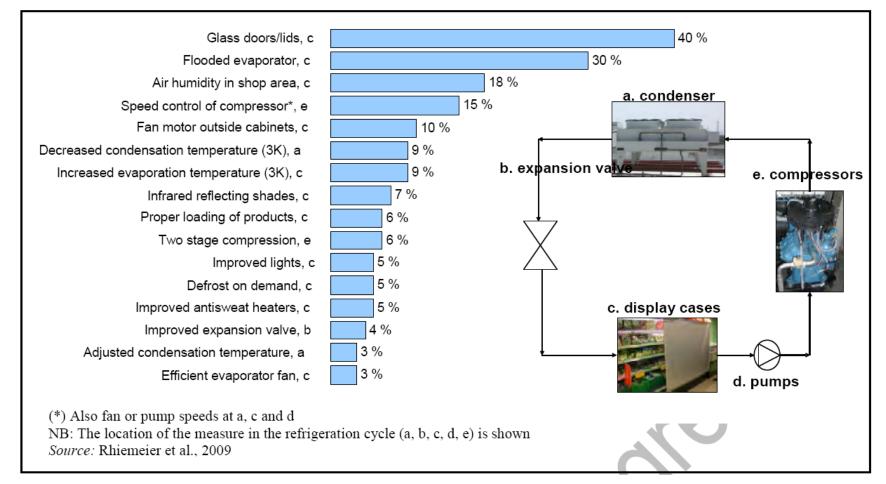


# Significant reduction in energy consumption



| RVC2, M2                   | kWh/(day.m <sup>2</sup> ) |
|----------------------------|---------------------------|
| Eurovent data average      | 7,6                       |
| myCalc 2020 (conservative) | 7,2                       |
| Current best Eurovent data | 6,2                       |
| BAT 2016 (from IA 2010)    | 6,6                       |
| Eurovent average proposed  | 12,3                      |






Commission

## Energy

.

## **Improvement options** display cabinets



**Ref.** Pilot reference document on Best Environmental Management Practice in the Retail Trade Sector



**Plug-in cabinet data** 

Plug-ins vs. remote, energy consumption

Remotes: TEC = REC + DEC

TEC = Total Energy Consumption REC = Refrigeration Electrical energy Consumption DEC = Direct Electrical energy Consumption (*e.g.* lighting, fans)

Plug-in: TEC = DEC = (REC + DEC)

DEC = direct (including refrigeration, so REC is included)

**Only measured differently!** 

Energy







## **Plug-in cabinet data**

#### Table 10-2: Performance thresholds for integral cabinets

| temperature | performance threshold                     |  |
|-------------|-------------------------------------------|--|
| L1          | (TEC)/(TDA)≤19_10 kWh/day/m <sup>2</sup>  |  |
| MO          | (TEC)/(TDA) ≤14.70 kWh/day/m <sup>2</sup> |  |
| MŻ          | (TEC)/(TDA) ≤12.70 kWh/day/m <sup>2</sup> |  |
| H2          | (TEC)/(TDA) ≤9.2 kWh/day/m <sup>2</sup>   |  |

#### Table 10-3: Performance thresholds for remote cabinets

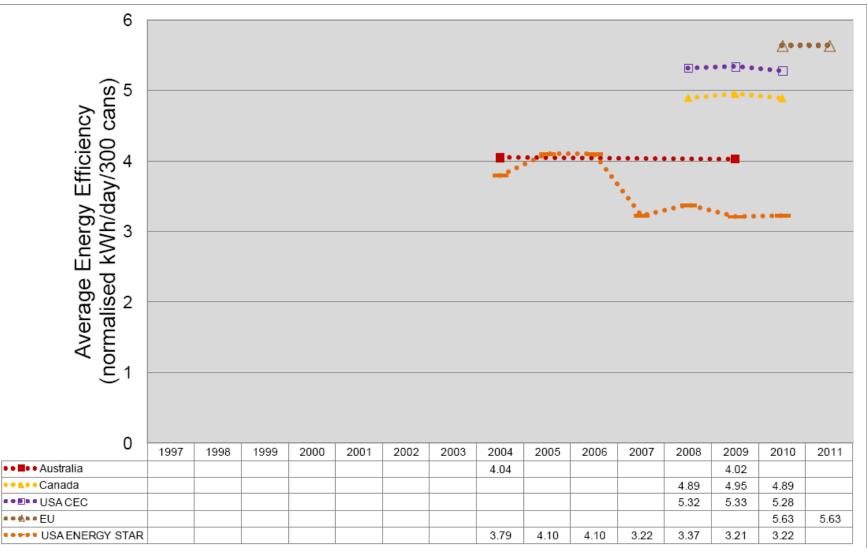
|    | temperature | performance threshold                       |  |
|----|-------------|---------------------------------------------|--|
| 10 |             |                                             |  |
|    | L1          | (TEC) / (TDA) ≤23.50 kWh/day/m <sup>2</sup> |  |
|    | L3          | (TEC) / (TDA) ≤21.00 kWh/dav/m <sup>2</sup> |  |
|    | M0          | (TEC) / (TDA) ≤11.75 kWh/day/m <sup>2</sup> |  |
|    | M1          | (TEC)7 (TDA) ≤11.75 kWh/day/m <sup>2</sup>  |  |
|    | M2          | (TEC) / (TDA) ≤10.85 kWh/day/m²             |  |
|    | H1          | (TEC) / (TDA) ≤8.00 kWh/day/m <sup>2</sup>  |  |
|    | H2          | (TEC) / (TDA) ≤9.20 kWh/day/m <sup>2</sup>  |  |





#### **Vending machine data**

| consumption (kWh/day) |               |                              |                    |                    |
|-----------------------|---------------|------------------------------|--------------------|--------------------|
| Year                  | Basic machine | Basic with<br>lighting timer | High<br>efficiency | With motion sensor |
| 1980                  | 14.4          | 13.2                         | 11.5               | 7.6                |
| 1990                  | 12.0          | 11.0                         | 9.6                | 6.3                |
| 2000                  | 10.6          | 9.7                          | 8.5                | 5.6                |
| 2008                  | 9.3           | 8.5                          | 7.4                | 4.9                |
| 2020                  | 8.3           | 7.6                          | 6.7                | 4.4                |
| 2030                  | 8.3           | 7.6                          | 6.7                | 4.4                |


Compare with other world regions, cfr. IEA 4E benchmarking study

**Ref.** Market Transformation Programme, BNCR VM0X: Cold Vending Machines Government Standards Evidence Base 2009, Defra, UK



#### Energy

#### **Vending machine**



Ref. Benchmarking report for refrigerated vending machines, IEA-4E, 2012



## Energy

## **Improvement options** vending machines

| Configuration                                                                    | Rationale / justification                                                                                                                                                                                                 | Resultant % reduction in annual consumption<br>compared to "basic" machine |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Basic machine - no efficiency features                                           | n/a – base efficiency                                                                                                                                                                                                     | 0%                                                                         |
| Basic machine with<br>lighting timer                                             | Lighting accounts for a<br>weighted mean of 21.6% of all<br>consumption for cold<br>machines (37% of can/bottle<br>and 15% of spiral/drum);<br>switched off for 38% of the<br>time (9 pm to 6 am seven<br>days per week). | 8%                                                                         |
| High efficiency<br>machine – lights<br>timer and optimized<br>refrigeration pack | Refrigeration savings of 4%<br>from tighter temperature<br>controls, and plus lighting<br>saving as above, plus 10%<br>extra for optimised<br>refrigeration pack.                                                         | 20%                                                                        |
| Retrofitted motion<br>or usage sensor to<br>switch off in silent<br>hours        | Machine is switched off 50% of the time, but sensor is still working.                                                                                                                                                     | 48%                                                                        |

**Ref.** Market Transformation Programme, BNCR VM0X: Cold Vending Machines Government Standards Evidence Base 2009, Defra, UK





- What is your opinion on the energy efficiency index formula proposed by the Wuppertal Institute? Does such a formula cover all appliances defined in the scope, including ice-cream freezers, bottle coolers, etc.? Energy per volume, per Total Display Area, other?
- How could it be improved? Your proposal for MEPS? Implementing measure (one formula-fits-all, clustering of different cabinet types; per cabinet type, temperature class, other)?





Enerav



- Please indicate which energy-saving measures are now standard compared to *e.g.* 10 years ago.
- Shall any generic recommendations be compulsory? Why (not)? (*e.g.* doors, LED, ...)
- Do you agree with the proposed energy savings of the different improvement options? Are they similar for all cabinet types? What are the energy savings when combining different options?
- What is the 'low-hanging fruit'? What is the remaining room for improvement? How much energy can be saved extra at which cost?
- Which of the technological improvement options are a responsibility and choice of the manufacturer, and which are in the hands of the retailers and consumers?







• Is there any technical aspect in Member State or non-EU voluntary or mandatory efficiency criteria that you believe would be useful in a EU regulation?

• Most consulted stakeholders, especially retailers, are in favour of mandatory energy labelling for commercial refrigeration. Are there any critical technical arguments for NOT supporting energy labelling?

• Manufacturers frequently argue lack of motivation of retailers for energy efficiency: is this still the case or is it changing?







• Most appliances use forced air convection for cooling. Which are the exceptions? Chest freezers? Any other chilling/freezing equipment? Is the reason for this that passive convection does not deliver sufficient chilling capacity?

• Are passive systems more/less efficient than the forced convection systems?



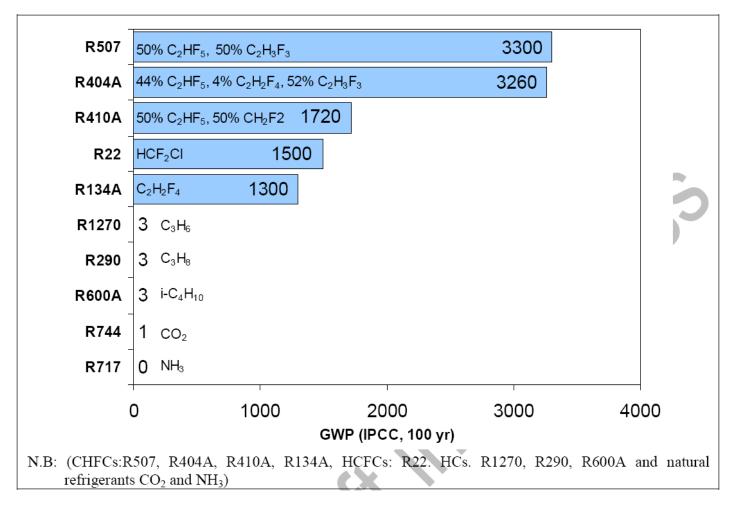




• What is your opinion on the proposed formula for Vending Machines. Will it be sufficient to follow EVA's energy label classification (A, B, C, D, E, F, G)?





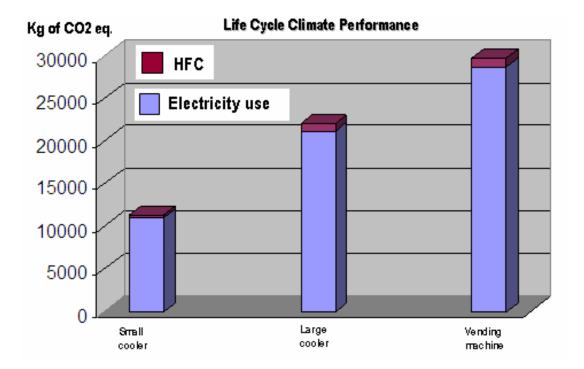

## **Technologies – Environment – Design**

## Refrigerants





#### Main concern, GWP




## **Energy efficiency**



**Ref**. Pilot reference document on Best Environmental Management Practice in the Retail Trade Sector





Other refrigerants can have lower GWP AND better energy efficiency





## **Pros & cons alternatives**

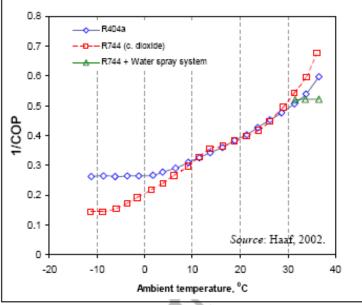
European Commission

| Refrigerant            | Properties                                                                                                                 | Benefits                                                                                                 | Drawbacks                                                    | Application                                                                                 |
|------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                        | Boiling Point: -78°C<br>Critical Temperature: 31°C<br>Flammability limits: non f                                           | Low ODP – Low GWP<br>Very low cost respect to traditional<br>refrigerants                                | Less efficient than HFCs at high ambient temperatures        | Remotes: used in several<br>supermarkets, and seems to be<br>the better alternative to HFCs |
| <i>CO</i> <sub>2</sub> | flammable<br>Compatibility: risks of                                                                                       | High efficiency<br>Non toxic / Non flammable<br>Small displacement for the                               | High pressures in the system<br>High capital cost due to low | Plug-ins: already used in small<br>quantity                                                 |
|                        | corrosion                                                                                                                  |                                                                                                          | mass production of $CO_2$<br>compressors                     | Vending machines: already used in small quantity                                            |
|                        | Boiling Point: -33°C<br>Critical Temperature: 133°C                                                                        | Low ODP – Low GWP<br>Good thermal properties<br>⇔ Good efficiency<br>Ammonia's recognisable smell is its | Toxicity, leakages not permitted                             | Remotes: only usable in indirect systems                                                    |
| Ammonia                | Flammability Limits:<br>15 - 28 % in Air<br>Compatibility:<br>Corrosive to copper alloys                                   | greatest safety asset.<br>Low cost                                                                       | Flammability                                                 | Plug-ins: not suitable                                                                      |
|                        |                                                                                                                            | Refrigeration systems cost 10 - 20<br>% less<br>Low charge of refrigerant                                | Limited charge permitted (150g)                              | Vending machines, not suitable                                                              |
|                        | Boiling Point: -42°C<br>Critical Temperature: 97°C                                                                         | Low ODP - Low GWP                                                                                        |                                                              | Remotes: only usable in indirect systems                                                    |
| Propane                | Flammability Limits:                                                                                                       | Evaporators will have to be<br>designed                                                                  | Flammability                                                 | Plug-ins, already used                                                                      |
|                        | Compatibility: Non corrosive                                                                                               | similar as for R22 or R404A<br>Good thermal properties                                                   | Limited charge permitted (150g)                              | Vending machines, use planned                                                               |
|                        | Boiling Point: -12°C<br>Critical Temperature: 135°C                                                                        | ⇔ Good efficiency<br>Low cost                                                                            | High installation cost in<br>supermarkets due to safety      | Remotes: only usable in indirect systems                                                    |
| Isobutane              | Flammability Limits:<br>1.6 - 8.4 % in Air<br>Compatibility: Non corrosive                                                 | Less noisy due to the reduction of pressure in the compressor                                            | fittings                                                     | Plug-ins: already used                                                                      |
| Unsaturated            |                                                                                                                            |                                                                                                          |                                                              | Vending machines: use planned                                                               |
| Unsaluralea<br>HFCs    | New developments; properties and applications can differ for different products, benefits and drawbacks have to be studied |                                                                                                          |                                                              |                                                                                             |

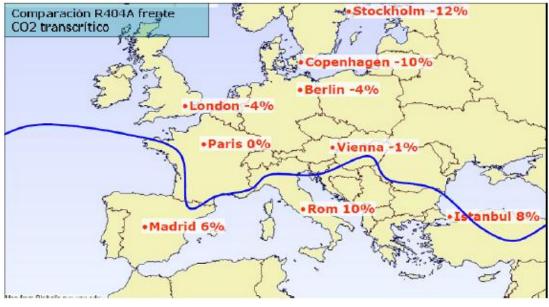
Ref. BIO IS, 2007



| 1           |                                                          |                                          |  |
|-------------|----------------------------------------------------------|------------------------------------------|--|
| Refrigerant | Drawbacks                                                | Application                              |  |
|             | Less efficient than HFCs at<br>high ambient temperatures | Remotes: used in several supermarkets    |  |
| $CO_2$      | High pressures in the system                             | Plug-ins: used in small quantity         |  |
|             | High capital cost due to low mass production compressors | Vending machines: used in small quantity |  |
|             | Toxicity, leakages not permitted                         | Remotes: only usable in indirect systems |  |
| Ammonia     | Flammability                                             | Plug-ins: not suitable                   |  |
|             | Limited charge permitted (150g)                          | Vending machines: not suitable           |  |
| Propane,    | Flammability                                             | Remotes: only usable in indirect         |  |
| propene     | Limited charge permitted (150g-2.5kg)                    | systems                                  |  |
| Inchritere  | High installation cost in                                | Plug-ins: already used                   |  |
| Isobutane   | supermarkets?                                            | Vending machines: already used           |  |
| Unsaturated |                                                          |                                          |  |
| HFCs        | benefits and drawbacks have to be studied                |                                          |  |




Research


### Refrigerants

## **CO<sub>2</sub>** at high ambient temperature

# Energy consumption of direct evaporation systems



**Ref**. Pilot reference document on Best Environmental Management Practice in the Retail Trade Sector



Ref. Danfoss S.A.



## Questions

- Efficiency comparison of refrigerants for the same cabinet type? Data available?
- More information about unsaturated HFCs (HFOs). Options, properties, drawbacks, applications, availability, cost, etc.
- Flammability/safety issues for hydrocarbons and CO<sub>2</sub>. How to be solved (technically/legislation/standard)?
- How to solve  $CO_2$  efficiency at ambient temperature >32°C? And the standard energy consumption measurement, climate class 3?
- CO<sub>2</sub> component availability? OK? If not, when expected?
- Bonus-malus system relating to the GWP of the refrigerant?





#### Joint Research Centre Institute for Environment and Sustainability

"1st Technical Working Group Meeting on Ecodesign for Commercial Refrigeration "

## End-of-Life analysis of Commercial refrigerators: hot-spots and potential requirements

F. Ardente, M. Calero, F. Mathieux

http://lct.jrc.ec.europa.eu/

Seville – 23<sup>rd</sup> April 2013





## **Outlines**:

- Objective of the End-of-Life analysis.
- Description of the method for the assessment of the EoL and its application to commercial refrigerators.
- Analysis of End-of-Life scenarios and product's hot-spots for commercial refrigerators.
- Analysis of potential ecodesign requirements.
- Questions / Discussion.





## **Objective the analysis:**

To investigate the End-of-Life (EoL) of commercial refrigerators and to explore the potential for Ecodesign measures for this phase.

**Relevant EU legislation is the WEEE Directive** (2012/19/UE): from 15 August 2018 all refrigeration appliances will be under the scope of WEEE. Until then, Member States have freedom of interpretation of the extents of the Directive (vending machines and household appliances are included).

The analysis has been based on a simplified 'Resource Efficiency Assessment of products - **REAPro' method** (JRC-IES and DG ENV).

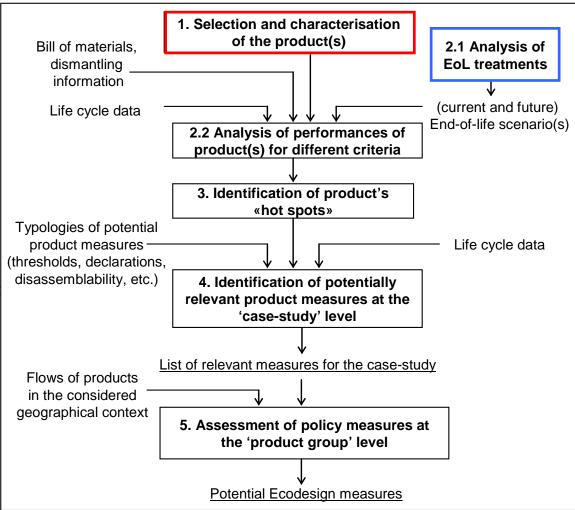
The full description of the method, including applications to other casestudies (TV and washing machines), is provided in:

http://lct.jrc.ec.europa.eu/assessment/assessment/projects#d





## Method:


Method is composed by 5 steps:

**Step 1.** Characterization of the product(s):

- Analysis of materials & components
- Disassembly information (e.g. measurements of time for extraction of some components).
- Life cycle data.

#### Step 2.1 Analysis of EoL treatments:

- Visits to <u>various plants</u> for a representative overview of EoL treatments (e.g. dismantling / shredding based).
- Analysis of potential <u>risks/problems</u> based on observations and/or comments from recyclers (e.g. risks related to contaminations by hazardous substances).

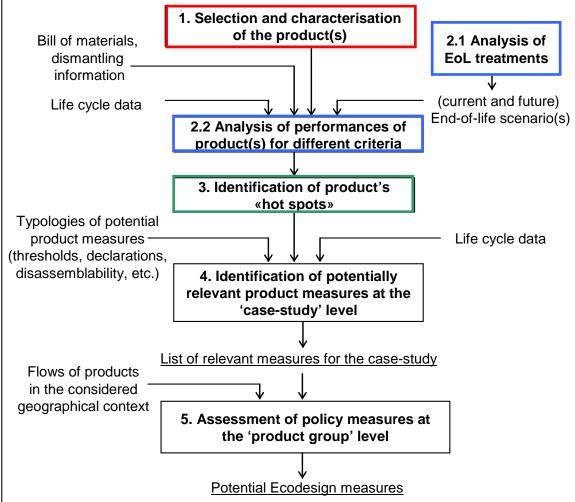






## Method:

#### Method is composed by 5 steps:


# **Step 2.2** Analysis of product against a set of criteria:

- Cross comparison of <u>literature review</u> with <u>on-site observations</u> (e.g. precious metals in some electronics).
- Identification of better performing products (<u>benchmark</u>) (e.g. products with more recyclable plastics).

## Step 3. Identification of 'hot spots':

## "components relevant at the EoL for some criteria"

- What components are currently landfilled / incinerated
- What components are responsible of relevant life cycle impacts for some categories
- How <u>different treatments</u> for some components can affect the quality / quantity of recyclable fractions?

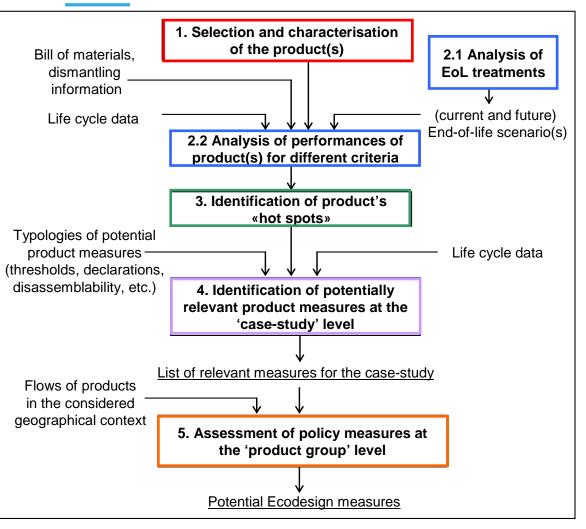






## Method:

Method is composed by 5 steps:


Identification of potential product's measures to improve product's EoL performances.

Step 4. at case-study product level

Step 5. at product group level

Identify/assess potential measures:

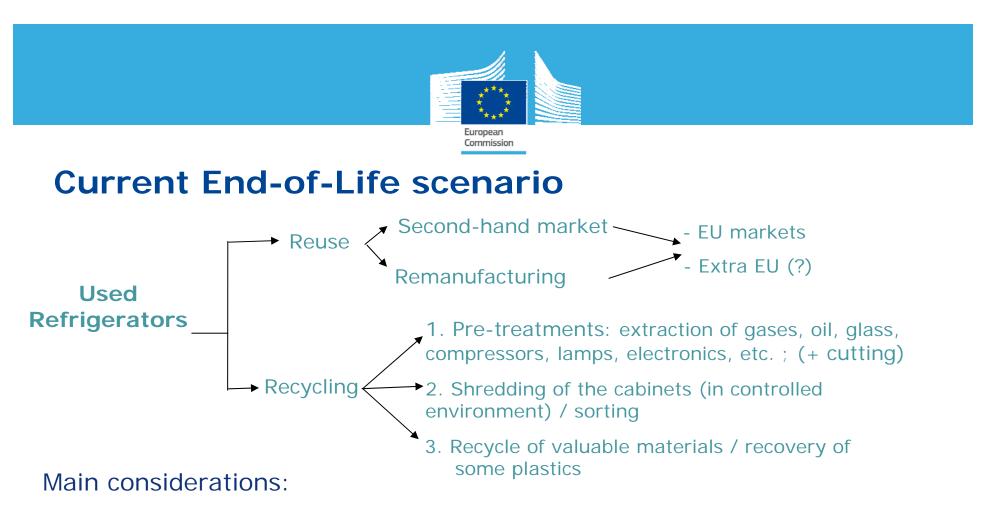
- from literature
- from stakeholders







## **Application to commercial refrigerators:**


The **criteria used** for the qualitative analysis of commercial refrigerators include:

- Reusability / Recyclability / Energy Recoverability (in mass and environmental impacts).
- Use and management of hazardous substances.
- Durability (lifetime extension).
- Dematerialisation (reduced used of some polluting substances).

The analysis of the criteria undergoing for commercial refrigerators is supported by:

- Scientific and technical literature review on <u>EoL treatments</u> and <u>environmental analysis</u> of refrigerators and commercial refrigerators.
- Interviews/visits to companies dealing with the EoL treatments of commercial refrigerators, in order to identify representative EoL scenario(s) in the EU, including:
  - Recycling plant (visit to an Italian representative plant; identification of other EU representative plants)
  - Association of recyclers,
  - Take back schemes.





- EoL treatments are similar to household refrigerators. Main differences related to:
  - problems related to the large dimensions.
  - presence of some additional components (e.g. large glass parts, electronics, lamps).
  - relevant incidence of second-hand market / remanufacturing / refurbishment





## **Current End-of-Life scenario**

## Reuse/remanufacturing:

Although few data available on flows and characteristics, there are evidences about its relevance:

- Specific characteristics that make products suitable for reuse/remanuf. (e.g. large devices with high value, high potential lifetime, producer's responsibility).
- Products generally substituted before the end of their wear out life for commercial reasons (e.g. fashion, changes of the needs of users).
- Some typologies of refrigerators (e.g. refrigerators for supermarkets) are largely under-represented in the waste flows of the interviewed recyclers.





## **Product's hot spots:**

- Reuse, remanufacturing
- Potential problems/benefits
- Information needed about this phase (especially for some typologies as e.g. large supermarket refrigerators):
  - flows, exports?, treatment for reused/refurbished devices,
  - EoL treatments of reused/refurbished devices (including treatments outside EU?).
- Life extension of the product (including <u>fashion</u> issue?):
  - could bring <u>environmental impacts benefits</u> through the life-cycle (reduction of resource consumption and emissions in manufacturing phase; and waste reduction at EoL).
  - analysis needed to avoid loss in quality and energy efficiency.





## **Product's hot spots:**

**Recycling commercial refrigerators** 

- Dimension of devices complicates the waste collection, delivery and treatment in the plants (including risks of breakage of circuits and leakages of oils and refrigerant gases).
- Refrigerants and oils have to be carefully extracted to avoid dispersion to the environment. Treatment of these material is complex and impacting (5% of the installed refrigerant are estimated to be recycled).
- Glass parts and fluorescent lamps are difficult to be removed from the cabinets.
- Electronics (printed circuit boards, capacitors, switches, others): difficult to be removed and contain valuable materials.
- PUR insulating foams (currently landfilled) may contain polluting substances (CFC or hydrocarbons). Foams are separated after shredding or before (less common)





## **Exemplary structure of requirement:**

Design for Extraction of the key components of the Comm. Refrigerators

The time for the extraction<sup>1</sup> of key components<sup>2</sup> of the commercial refrigerators<sup>3</sup>, performed by professional worker, shall not exceed  $X^4$  seconds.

- 1. To be measured according to a standardized procedure
- 2. These could include, among the others: glass parts (doors), lamps, batteries, electronics (e.g. printed circuit boards, capacitors, switches)
- 3. Requirements could be differentiated for different sub-categories of commercial refrigerators
- 4. To be defined according to on-site measurements.





## **Other potential requirements:**

Other potential requirements could focus on:

- <u>Dematerialisation</u>: Thresholds on the use of refrigerant gases (e.g. per unit of cooling capacity), without affecting efficiency.
- <u>Labelling of refrigerants</u> (for separate collection and recycling)
- <u>Substitutability of key components</u> and availability of spare parts for lifetime extension (including remanufacturing/reuse options).
- <u>Modularity</u> and/or easy disconnection of product's parts (to simplify EoL management, especially transports and handling in the recycling plants).
- Measures to avoid accidental breakage of refrigerant circuits (shielding).
- Measures to reduce problems related to insulation materials (blowing gases, improve recyclability of these parts).
- <u>Provision of relevant information</u> (suggestions?)





## **Discussion**:

- <u>Is the presented analysis in line with your knowledge?</u> (missing key issues? Suggested representative recycling plants? Potentially relevant references?).
- Could you please provide additional information about remanufacturing/reuse?
- <u>How long do some pre-treatments require</u>? (information on time for extraction of key components).
- <u>Could you please provide information on quantity/typologies of refrigerant and</u> <u>product's efficiency in relationship with the cooling capacity</u> (potential setting of thresholds for the amount refrigerants).
- Do you know additional hot spots for the EoL of commercial refrigerators?
- <u>Do you suggest any additional potential measure</u> (including relevant information to be provided).
- <u>Will new materials hinder the EoL treatments?</u> (e.g. new refrigerants, blowing gases used in the insulations, new electronics, etc.).



