Review Ecodesign / Energy labelling Cooking appliances

2nd Technical Working Group – interactive webinar

04th & 5th May 2021

Agenda

Time	Торіс
10:00 - 10:10	Introduction & Welcoming
10:10 - 11:00	Hobs: main results and policy options
11:00 – 11:15	Cooking fume extractors: scope
11:15 – 11.45	Cooking fume extractors: improvement options, current situation and policy option 1
11:45 – 12:15	Cooking fume extractors: policy option 2
12.15 – 12.45	Cooking fume extractors: policy option 3
12.45 – 12.55	Cooking fume extractors: scenarios comparison
12.55 – 13.00	Wrap-up and next steps

Hobs

Scope

- Inclusion of small (auxiliary) burners with a nominal heat input under 1.16 kW → not covered by the current standard, but a the test procedure is ongoing
- Inclusion of hobs using 3rd family gases → recommended to be included in the scope.

Base cases and improvement options

- 3 base cases: radiant, induction and gas
- Improvement potential for induction and gas

Feasibility of energy labelling for hobs

- Small difference in the energy consumption of the three electric technologies
- Difficult to set distinct energy classes.
- Energy labelling is not recommended for hobs

Current Ecodesign minimum requirements

	Electric hob (Energy consumption in Wh/kg)	Gas-fired hob (energy efficiency in %)
February 2015	< 210	> 53
February 2017	< 200	> 54
February 2019	< 195	> 55

Technology	Benchmark
Electric	169.3 Wh/kg
Gas	63.5%

Proposals for Ecodesign minimum requirements

Background

- The market analysis shows that induction technology is steadily replacing radiant technology in the EU households
- Stricter common requirements could equal to banning radiant hobs, since no further improvement seems feasible.
- Setting different thresholds for radiant and induction hobs would deviate from the current technology-neutral approach
- Common requirements for electric and gas hobs → not recommended at this moment, since the test methods available for electric and gas hobs are completely different and not comparable

Policy options

Option 1: common minimum requirement for electric hobs					
	Electric (Energy consumption Wh/kg)	hob in	Gas-fired efficiency in ^G	hob %)	(energy
February 2021	< 190			> 56	
February 2023	< 180			> 57	
February 2025	< 175			> 58	
Option 2: differe hobs	ent minimum re	quire	ments for radi	ant and i	nduction
	Radiant (Energy consumption Wh/kg)	hob in	Induction hob (Energy consumption in Wh/kg)	Gas-fi (energ efficie %)	red hob Jy ncy in
			< 185	>	> 56
February 2023	< 190		< 180	>	> 57
February 2025	< 185		< 175	>	> 58

Induction – Radiant comparison in life cycle energy

- Induction → more electronics → more energy due to materials
- Different base cases in Task 5 and 6
- Comments from stakeholders → a common minimum requirement requires a life cycle energy analysis in scenarios

Scenarios comparison

Scenario	Technology impact	Energy cumulative impact (TWh electricity / TJ natural gas)	GHG cumulative impact (MtCO2)	LCC cumulative impact (billion EUR)
Sc1: electric hobs: same ecodesign requirements for induction and radiant hobs	Radiant hobs would not fulfil 2023 threshold.	-5.7	-1.0	-0.9
Sc2: electric hobs: different ecodesign requirements for induction and radiant hobs	Radianthobswould remain inthe market, andeventuallybereplacedbyinduction hobs bymarket evolution	-4.7	-0.8	-0.7
Sc1: gas hobs: ecodesign requirements	Gas hobs would be driven to reach their improvement potential, though it is very marginal	-1092	-0.1	-0.03

Cooking fume extractors

Scope

Inclusion of only recirculation cooking fume extractors

- Key element of these extractors → odour filters, which may or not be sold together with the cooking fume extractors → a standard odour filter?
- Declaration of the odour reduction efficiency based on MEK test method
- MEK test method → only for odour reduction efficiency of recirculation extractor → starting point to develop ecodesing measures for recirculation cooking fume extractors.
- Proposal of threshold of 75% for odour reduction efficiency for both recirculation and ducted cooking fume extractors → too strict?

Base cases and improvement options

- Two base cases: cabinet CFE and chimney CFE
- Improvement options → optimised working conditions, improved motors and brushless motors

Current situation measured at BEP

- Analysis of APPLiA database 143 models
- Brushless and capacitor motors → best energy classes
- Shade poles \rightarrow worst energy classes
- Highest maximum airflows → best energy classes

Current situation measured at 9-points

- The use of the 9-points average changes the distribution of points with airflow
- Usually, best motors also have a large range of min – max. airflows → no real correlation with max. airflows
- If EEI is calculated as 9-points average, the correlation almost completely disappears

Options for the revision of EEI

Proposal	Advantages	Disadvantages/obstacles
Integrating odour	• Identify best products in terms of function, i.e. those	• The test method currently available is only valid for
reduction efficiency	that consume less energy to provide the same	recirculation modes
	function	
	• Take into account the product as a whole, i.e.	
	considering the design, shape, etc. that may have an	
	impact in the product performance	
	Cover recirculation modes	
Indirect energy	• Extend the boundaries of the system to include the	• It dilutes the impact of the direct energy consumption,
consumption in heating	indirect impact of excessive airflow.	which may discourage the technology improvement.
and cooling		
Proposal	Advantages	Disadvantages
EEI based in FDE	• The current method only takes into the FDE as a time	• The odour reduction efficiency is not considered.
	factor. This proposal provides a figure of real energy	• It is probable that motors that are more powerful perform
	efficiency, as ratio between power delivered and power	better FDE. A reference FDE is require to compensate this
	consumed.	effect.
	• The ratio airflow/power would help smooth the	
	apparent benefits of large airflow extractors	
Proposal	Advantages	Disadvantages
EEI based on SAEC as	• The AEC is confronted to the airflow provided by	• The odour reduction efficiency is not considered.
function of airflow	cooking fume extractor, which is a parameter related	• It is probable that motors that are more powerful perform
	to functionality	better EEI, because their FDE are higher.
	• EEI distinguishes the three motor technologies.	
Proposal	Advantages	Disadvantages
Update of existing EEI	• Energy labels principles are unchanged, and are	• The odour reduction efficiency is not considered.
based on SAEC as	improved by 9-points average	• Airflow is not considered either, i.e., the work or function
function of power	EEI distinguishes the three motor technologies.	delivered by power unit is not considered
		EUC.

ppear

Commission

EEI based on fluid dynamic efficiency (FDE)

$$EEI = \frac{FDE}{FDE_{ref}}$$

$$FDE_{ref} = 0.0003 \cdot W_{med} + 0.0629$$

$$W_{med} = \sum_{i=1}^{3} W_i \frac{t_i}{(t_1 + t_2 + t_3)}$$

Brushless

Capacitor

250

200

Shaded poles

EEI based on FDE: energy classes

EEI (FDE) – W av. 9-points

Option a: the thresholds of the energy classes are even along all energy classes, i.e. the difference of EEI between energy classes is the same or very similar.

Energy class	Brushless (total =22)	Capacitor (total = 96)	Shaded poles (total = 25)
A (EEI > 350)	0	0	0
B (350 ≥ EEI> 300)	6	0	0
C (300 ≥ EEI> 250)	5	0	0
D (250 ≥ EEI > 200)	8	0	0
E (200 ≥ EEI > 150)	3	0	0
F (150 ≥ EEI > 75)		72	1
G (EEI ≤ 75)		25	23

EEI based on FDE: energy classes

EEI (FDE) – W av. 9-points

Option b: the thresholds have been determined in a way that the number of models is evenly distributed among the energy classes

Energy class	Brushless (total =22)	Capacitor (total = 96)	Shaded poles (total = 25)
A (EEI > 350)	0	0	0
B (350 ≥ EEI> 250)	11	0	0
C (250 ≥ EEI> 150)	11	0	0
D (150 ≥ EEI > 98	0	33	0
E (98 ≥ EEI > 80)	0	28	2
F (80 ≥ EEI > 58)		23	3
G (EEI ≤ 58)		16	16

Ecodesign requirements

EEI (FDE) – FDE av. 9-points

Minimum F class + FDE=5%

- FDE = 5% affects shaded pole motors.
- energy class G based on FDE covers all these cooking fume extractors,

EEI based on SAEC as function of airflow

AEC av. 9 points – Airflow av. 9-points

EEI (Airflow) – Airflow av. 9-points

 $SAEC = 0.1608 \times Q_{med} + 3.0179$

EEI calculated as the ratio AEC/SAEC

EEI based on SAEC(airflow): energy classes

EEI (Airflow) – Airflow av. 9-points

• **Option a**: the thresholds of the energy classes are even along all energy classes, i.e. the difference of EEI between energy classes is the same or very similar.

Energy class	Brushless (total =22)	Capacitor (total = 96)	Shaded poles (total = 25)
A (EEI < 25)	0	0	0
B (25 ≤ EEI < 70)	16	0	1
C (70 ≤ EEI < 100)	6	1	0
$D(100 \le EEI < 130)$	0	2	4
E (130 ≤ EEI < 160)	0	17	14
F (160 ≤ EEI < 190)	0	51	4
G (EEI ≥ 190)	0	25	2

EEI based on SAEC(airflow): energy classes

EEI (Airflow) – Airflow av. 9-points

• **Option b**: the thresholds have been determined in a way that the number of models is evenly distributed among the energy classes

Energy class	Brushless (total =22)	Capacitor (total = 96)	Shaded poles (total = 25)
A (EEI < 25)	0	0	0
B (25 ≤ EEI < 100)	22	0	1
C (100 ≤ EEI < 154)	0	18	2
D (154 ≤ EEI < 170)	0	22	3
E (170 ≤ EEI < 184)	0	29	1
F (184 ≤ EEI < 207)	0	26	4
G (EEI ≥ 207)	0	12	4

Ecodesign requirements

EEI (Airflow) – FDE av. 9-points

- Minimum F class + FDE=5%
- Energy class G based on airflow covers shaded and some capacitor motors
- Min FDE is additional to the minimum energy class required.

Update of the existing EEI based on power

 $SAEC = 0.5983 \times W_{med} + 17.911$

EEI calculated as the ratio AEC/SAEC

Update of EEI based on power: energy classes

EEI (W) – W av. 9-points

Option a: the thresholds of the energy classes are even along all energy classes, i.e. the difference of EEI between energy classes is the same or very similar.

Energy class	Brushless (total =22)	Capacitor (total = 96)	Shaded poles (total = 25)
A (EEI < 60)	0	0	0
B (60 ≤ EEI < 70)	7	0	0
C (70 ≤ EEI < 80)	11	0	0
D (80 ≤ EEI < 90)	3	3	1
E (90 ≤ EEI < 100)	1	54	12
$F(100 \le EEI < 110)$	0	35	11
G (EEI ≥ 110)	0	5	0

Update of EEI based on power: energy classes

Option b: the thresholds have been determined in a way that the number of models is evenly distributed among the energy classes

Energy class	Brushless (total =22)	Capacitor (total = 96)	Shaded poles (total = 25)
A (EEI < 60)	0	0	C
B (60 ≤ EEI < 75)	9	0	C
C (75 ≤ EEI < 90)	12	1	1
D (90 ≤ EEI < 95)	1	18	1
E (95 ≤ EEI < 98)	0	32	۲۸ ۱
F (98 ≤ EEI < 103)	0	32	7
G (EEI ≥ 103)	0	19	7

Ecodesign requirements

EEI (W) - FDE av. 9-points

- Minimum F class + FDE=5%
- Energy class G based on W covers capacitor and shaded poles motors
- Min FDE is additional to the minimum energy class required.

Scenarios comparison

Scenario	Energy cumulative	GHG cumulative	LCC cumulative
	impact (TWh electricity)	impact (MtCO2)	impact (billion EUR)
Sc1a: new EEI and energy classes based on FDE	-17.0	-3.0	0.5
Sc1b:	-11.3	-2.0	1.5
Sc2a: new EEI and energy classes based on airflow	-13.3	-2.3	1.3
Sc2b:	-7.5	-1.3	2.2
Sc3a: : update of existing EEI and energy classes based on power	-7.5	-1.3	2.2
Sc3b	-5.3	-0.9	2.6

Next steps

- Minutes of the TWG meeting
- Period for written comments until 6 June
- Revision of the report based on your feedback
- BATIS HTML not available due technical issues → we will send an email informing you about the recommended format for sending your comments

