

2nd Stakeholder Meeting of the Preparatory Study for applying EU sustainable product policy instruments to solar photovoltaics, Brussels, December 19th 2018

.

European Commission

Transitional Methods

..... where certain aspects essential to the implementation of Ecodesign, Ecolabel, Energy Label & GPP are not covered by existing standards, the Commission may choose to specify transitional methods, that are implemented as regulations until suitable standards are adopted.

2

1st stakeholder meeting, 29 June 2018

- Task 1 Report
- Dedicated report on standards (including gap analysis)

Expert Workshop on Transitional Methods Ispra 31 Oct. 2018

2nd Stakeholder Meeting, 19 December 2018 Draft report on proposed transitional methods

5

3rd Stakeholder Meeting mid-2019 Finalised report on transitional methods

Contents

- Inverter performance
- PV system energy yield
- Durability: degradation and failure rate
- Other materials efficiency aspects

Inverter performance

Proposed functional parameter:

"1 kWh of AC power output from a reference photovoltaic system (incorporating the efficiency of a specific inverter) under predefined climatic and installation conditions as defined for a typical year and for a service life of 10 years".

5

Proposed methodology

Input data:

- European efficiency (EN 50530), η_{EUR}
- DC energy yield of a nominal 1 kWp PV array (IEC 61853), EY_{DC} (kWh/year)

Note:

- Assumes the PV array always works at its maximum power point
- Not sensitive to the sizing of the inverter (AC capacity) to the PV array (DC nominal power)
- Possible temperature dependence of inverter efficiency (socalled derating) not considered
- No other system losses considered

Annet

Proposed methodology

• Calculate the AC energy output from 1 kWp reference PV array over a year, EY_{AC} (kWh/year per installed kWp)

 $EY_{AC} = \eta_{\rm EUR} \cdot EY_{DC}$

• Functional parameter:

7

 $FP_{Inverter} = \frac{1 \ (kWh \ of \ AC/year) \cdot 1 \ (kWp \ PV \ array)}{EY_{AC} \ (kWh \ of \ AC/year)}$

Inverter example

Data from five commercial inverter datasheets with a hypothetical residential PV system

	Nominal power, P _{AC,r} (W)	European Efficiency, η _{EUR}	<i>EY_{AC}</i> (kWh/yr · installed kWp)	Functional parameter FP _{inverter}	
1	1500	94.5	1917.457	5.21 · 10 ⁻⁴ —	(3%)
2	2750	93.6	1899.195	5.27 · 10 ⁻⁴	
3	2300	93.2	1891.079	5.29 · 10 ⁻⁴	0.4%
4	1550	91.8	1862.672	5.37 · 10 ⁻⁴ —	
5	1200	90.9	1844.411	5.42 · 10 ⁻⁴	(4%)

Photovoltaic System Energy Yield

Proposed PV system **functional parameter:**

"1 kWh of AC power output supplied under fixed climatic and installation conditions as defined for a typical year (with reference to IEC 61853-4) and for a service life of 30 years".

9

Factors influencing PV system energy yield

European

Commission

EN IEC 61853-4 "Photovoltaic (PV) module performance testing and energy rating – Part 4: Standard reference climatic profiles"

- Representative of the major climatic conditions
- Six datasets with hourly values for one year
- Fixed open rack, equator-facing, inclination angle 20°

Year Month Day Local solar time Ambient temperature, T_{amb} (°C) Wind speed at the module height, v (m·s⁻¹) Sun elevation (°)

Sun incidence angle to the normal of the module, θ (°)

Global horizontal irradiance, Gh (W·m⁻²) Direct horizontal irradiance, Bh (W·m⁻²) Global in-plane irradiance, G (W·m⁻²) Direct in-plane irradiance, B (W·m⁻²)

Satellite-retrieved Spectrally resolved global in-plane irradiance integrated in 32 spectral bands, R (W·m⁻²)

EN IEC 61853-4 *Standard reference climatic profiles*

Tropical humid **Subtropical arid** Subtropical coastal **Temperate coastal Temperate continental** High elevation (above 3000m)

12

1.7 . 5

Proposed methodology – input data

- PV array size and module performance characteristics (IEC 61853)
 - DC energy yield (EY_{DC}) of 1 kWp PV array over a year (kWh/year)
 - 3 reference climatic datasets
- Power Conditioning Equipment Inverter
 - EN 50530. European efficiency, η_{EUR}
- PV system losses (default values or system specific values)
 - Cables losses
 - Diodes and connectors
 - Mismatch

•

. . .

Commission

Proposed methodology - calculation

- Estimation of the AC energy yield, System $EY_{AC \ vear \ 0}$ System $EY_{AC \ vear \ 0} = \eta_{EUR} \cdot (1 - \eta_{system_loss}) \cdot EY_{DC}$
- Lifetime AC energy yield for each reference climate

 $System EY_{AC_lifetime} = System EY_{AC_year\ 0} \cdot T_{lifetime} \cdot \left(1 - \tau_{deg} \cdot \frac{T_{lifetime}}{2}\right)$

 $T_{lifetime}$: 30 years τ_{dea} : degradation rate

For every reference climate

Proposed methodology

• Functional parameter:

 $FP_{System} = \frac{1 \ (kWh \ of \ AC/year) \cdot 1 \ (kWp \ PV \ system)}{EY_{av} \ (kWh \ of \ AC/year)}$

 EY_{av} : Average system's AC energy yield over its lifetime

(EY_{AC_lifetime} / T_{lifetime})

Proposed methodology - Example

DV array: 5 kW of c.Si modulos	Three reference climates		
FV allay. J KW OI C-SI IIIOuules	Subtropical arid		
Inverter: $\eta_{EUR} = 0.96$	Temperate coastal Temperate continental		
Other losses 4.5%			

To demonstrate the role of the various loss factors we use performance ratio (PR):

- *PR is the ratio of the system performance to the module name plate value*
- Ideal PV system with NO losses would have a PR=1

System performance example (1) sensitivity to reference climates

sensitivity to reference climates						Ideal PR = 1		
	P	IE V modu	C 61853 le perform	nance	Inverter	PV system	Theoretical	
Climates	AOI (%)	λ (%)	Irrad & Temp (%)	Total losses (%)	Losses (%)	Losses (%)	Performance Ratio	
Subtrop. arid	-2.7	0.4	-8.7	-10.8	-4.0	-4.5	0.816	
Temp. coastal	-3.9	1.8	-3.2	-5.3	-4.0	-4.5	0.866	
Temp. cont	-3.1	1.3	-6.1	-7.8	-4.0	-4.5	0.843	

System performance example (2) sensitivity to losses

PV system configuration. Residential	PR
Default installation	0.75 ←
Optimised design and yield forecasting	0.80
Optimised monitoring and maintenance	0.85

Task 4. "Technical analysis including end-of-life".

Base case as an average system

	PV System PR	PV system losses			
Climates	(module and inverter)	Final PR 0.75	Final PR 0.80	Final PR 0.85	
Subtrop. arid	0.8562	11.91%	6.30%	0.70%	
Temp. coastal	0.9091	16.80%	11.52%	6.24%	
Temp. cont	0.8848	14.63%	9.20%	3.78%	

Possible additional needs

- Extend to PV systems with different configuration to current IEC 61853 reference datasets (equator facing with 20° inclination angle)
 - Define the models to estimate the in-plane irradiation
 - Treatment of bifacial modules
 - Use of trackers
- Extend to PV systems at specific locations
 - Use PVGIS, or similar tools to obtain climatic datasets like those in IEC 61853-4
 - Existing typical meteorological year (TMY) datasets would need additional variables
- Building Integrated PV systems
 - Models to estimate the in-plane irradiation
 - Method to define the coefficients for the module temperature estimation (increased compared to free-standing rack situation)

Possible additional needs

- PV systems with battery storage
 - Models to simulate:
 - the battery's working cycles of charge and discharge
 - state of charge
 - efficiency (temperature and age dependent)
 - Consumption profiles
 - Hourly calculations to model the flow of energy between the different components (PV array, load, battery, inverter and grid)

Note

- IEC 61853-3 already provides for hourly calculations of DC energy yield
- Need to also consider range of inverter efficiency values measured for different power loads (IEC 61683 and EN 50530)

Durability

Transitional methods to:

- ✓ To establish a <u>definition of the degradation rate</u> for solar PV modules, inverters and PV systems.
- ✓ To establish one (or more equivalent) <u>method(s) to enable</u> <u>quantitative evaluation</u> of the degradation of PV modules, inverters, components and PV systems.

Degradation of PV Modules

Pre-requisites: conformity to all relevant design qualification and type approval (ex: EN 61215 series), safety tests (EN IEC 61730 under Low Voltage Directive).

Prescribed values:

- c-Si: between 0.7% per year (linear)
- Thin-film and heterojunction: 1% per year (linear)

Product-specific values - requirements for acceptance:

- Robust data from the measurement of field-deployed systems and made available (upon request) to the market surveillance authorities, covering all reference climatic profiles, with data from at least:
 - 5 consecutive years
 - 2 separate geographical locations in each climatic profile
 - 2 mounting options
- Assigned value shall be the average of the collected values

Measurement guidance: EN 61724-1 and IEC 61724 series (PV guidelines monitoring)

Degradation of Inverters

Pre-requisites: conformity to all relevant design qualification, type approval and safety tests: EN 62116 (islanding prevention), IEC TS 62910 (test for low voltage ride-through measurements), as well as IEC 61683 and EN 50530 (efficiency measurements).

Prescribed values:

- Degradation rate: 0 %/year (no degradation)
- Failure rate: 10% per year

Product-specific values - requirements for acceptance:

• To be defined

Degradation of PV Systems

Pre-requisites: conformity to requirements for PV modules and inverters, and to those specifically related to PV systems relevant to safety tests, design qualification and type approval (ex: IEC 62548, HD 60364-7-712, EN 62124, IEC TS 62738, EN 62446-1, IEC 62446-2 (draft), IEC TS 62446-3, EN 50583 series (BIPV)).

Prescribed values:

- Wafer-based c-Si: 0.7% per year (linear)
- Thin-film and heterojunction: 1% per year (linear)

Product-specific values - requirements for acceptance:

- Robust data from the measurement of field-deployed systems and made available (upon request) to the market surveillance authorities, covering all reference climatic profiles, with data from at least:
 - 5 consecutive years
 - 2 separate geographical locations in each climatic profile
 - 2 mounting options
- Assigned value shall be the average of the collected values

Measurement guidance: EN 61724-1 and IEC 61724 series (PV guidelines monitoring)

Other Materials Efficiency Aspects

- Dismantlability of PV Modules
- Disassemblability of PV Systems
- Remanufacturing of PV Systems

Pending the publication of the horizontal standards CEN/CENELEC JTC10 'Energy-related products – Material Efficiency Aspects for Eco-design under EC mandate M/543

Summary

- Procedures proposed for determining the performance of inverters and PV systems
- Need measures for identification of additional PV system losses, including quantification methods
- Approach proposed for durability parameters for components and systems
- Other material efficiency aspects are pending
- Draft report on transition methods available for review, with a finalised version planned for the 3rd stakeholder meeting

JRC TECHNICAL REPORTS

Transitional method for PV modules, inverters, components and systems (Draft)

Thank you for your attention

DG GROW SI2.764246 JRC № 34713-2017

Dunlop, E. D.
Gracia Amillo, A
Salis, E.
Sample, T.
Taylor, N.

2018

27

