

X

The European Commission's science and knowledge service

Joint Research Centre

Webinar: Getting started with indicator 1.2 Life cycle GWP

Ŵ

DG JRC B5

6th November 2018

Outline

- Part 1: Level(s) part 3 guidance on life cycle GWP
- Part 2: Basic steps in making a life cycle GWP calculation
- Part 3: Options available in terms of CO2 factors and LCI data
- Part 4: More advanced options for modelling life cycle GWP

Part 1: Level(s) part 3 guidance on life cycle GWP

the Level(s) documentation

Part 1

Introduction to the framework

What it is, how it is envisaged to be used, its scope, at which stages in a building project and its life cycle.

Part 2

Basic introduction to the indicators and tools

The common metrics and life cycle tools, units of measurement, scope and boundaries, reference standards.

Part 3

How to carry out a performance assessment

Guidance on the calculation methods, reporting formats for results, the Level 2 rules, the advanced aspects of Level 3, taking into account factors that influence risk and value.

The Level(s) common framework

Macro-objective 1: Greenhouse gas emissions along a buildings life cycle

Macro-objective 2: Resource efficient and circular material life cycles

Macro-objective 3: Efficient use of water resources

Macro-objective 4: healthy and comfortable spaces

Macro-objective 5: Adaptation and resilience to climate change

Macro-objective 6: Optimised life cycle cost and value

The Level(s) common framework

Life cycle environmental performance

Macro-objective 1: Greenhouse gas emissions along a buildings life cycle

1.1 Use stage energy performance (kWh/m²/yr)

Warming Potential (CO₂ eq./m²/yr)

Macro-objective 2: Resource efficient and circular material life cycles

2.1 Life cycle tool: Building bill of materials (kg)

2.2 Life cycle tools: Lifespan, adaptability and deconstruction scenarios

2.3 Construction & demolition waste and materials (kg/m²)

tool

2.4 Life cycle tool: Cradle to cradle Life Cycle Assessment (LCA) (impact/m²/yr)

Overarching

assessment

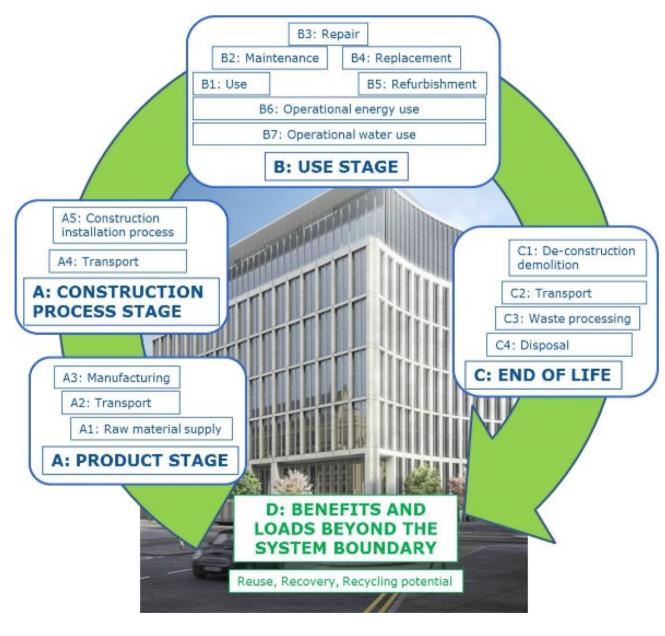
European Commission

Macro-objective 3: Efficient use of water resources

3.1 Use stage water consumption (m³/occupant/yr)

Overview of indicator 1.2 life cycle GWP

Aim:


- Quantify and reduce greenhouse gas (GHG) emissions associated with a building's life cycle
- kg CO₂ equivalents/m²/yr (useful floor area) for each life cycle stage

LCA focused on GWP characterisation:

- Reference to functional equivalency of buildings (what, how much/long/well
- Boundary: Evolution of the building from cradle to cradle

The Building's Life Cycle

Calculation methods and reference standards

Methodological framework:

- ISO 14040/44 (2006) \rightarrow LCA phases
- EN 15804 (2012) and 15978 (2011) \rightarrow LCA for construction products and buildings
- ISO 14067 (2018) and ISO 16745 (2017) → Carbon footprinting of products and buildings (NEW)
- PEF Category Rules Guidance (2017) \rightarrow more specific guidance on LCA
- Technical references from existing schemes, data and tools

http://www.ipcc.ch/pdf/assessmentreport/ar5/wg1/WG1AR5_Chapter08_FINAL.pdf

Part 3 → Simplified and detailed rules + Reporting (3 accounting category flows: fossil, biogenic, land-related emissions)

How can it be used in building projects?

Project life cycle:

- Design tool for the ex-ante assessment of building options/scenarios \rightarrow design optimisation
- Post-ante assessment during the completion/monitoring phase

Using it at different levels

Level 1:

- Not LCA experts
- Learning tool for promoting harmonised quantification and understanding of key contributions to overall carbon footprint of buildings
- Balance between **simplification** (lifecycle stages and building elements) and coherence (interpretation)

Level 2:


- Reporting on environmental performance of buildings
- Provision of a reference measurement and reporting framework (all life cycles in principle, cut-off rules, EPDs)
- Minimum data quality requirements and critical review

Level 3:

- Integrating 'carbon performance' for design optimisation
- Most advanced use ('all' elements, cut-off rules, data quality, critical review)
- Alternative scenarios may be assessed

the steps in making an assessment

Step 1: Choose the indicators and tools

Step 2: Choose the Level of assessment

Step 3: Define the building

Step 4: Follow the guidance and rules

Step 5: Complete the reporting format

Step 6: Determine valuation influence and reliability

Step 7: Finalise and submit

Basic <u>reporting</u> format

Building description

Parameter	Office buildings	Parameter	Residential buildings
Location		Location	
Climate zone	Select	Climate zone	Select
Project type	Select	Project type	Select
Year of construction		Year of construction	
Original year of construction		Original year of construction	
Service life or holding period		Service life or holding period	
Building form	Select	Building form	Select
	If other describe here		If other describe here
Property schedule		Property schedule	
Floor area measurement		Floor area measurement	
Market segment	Select	Market segment	Select
-International base definition -Metropolitan base definition	Select		
Servicing		Servicing	
Conditions of use		Conditions of use	
Projected occupancy density		Projected occupancy density	n/a
Projected pattern of occupation		Projected pattern of occupation	n/a
Assumed void rate		Assumed void rate	

Basic <u>reporting</u> format

	Project Stages						
Indicators and Tools	Design Stage	Implementation	Completion and	Operation and			
	Design Stage	stage	handover stage	occupation stage			
Indicator 1.1	not used	not used	not used	not used			
Use stage energy performance	notuseu	notuseu	not used	not used			
Indicator 1.2	Level 1	not used	not used	not used			
Life cycle Global Warming Potential	Leveri	notuseu	notuseu	not used			
Indicator 2.1	not used	not used	not used	not used			
Life cycle tools: Building bill of	notuseu	not used	notuseu	not used			
Ind.2.2 - Scenario 1							
Building and elemental service life	not used	no used	not used	not used			
planning							
Ind.2.2 - Scenario 2							
Design for adaptability and	not used	not used	not used	not used			
refurbishment Ind.2.2 - Scenario 3			L				
	not used	not used	not used	not used			
Design for deconstruction, reuse and	not used	not used	not used	not used			
recyclability Indicator 2.3							
	not used	not used	not used	not used			
Construction and demolition waste							
Indicator 3.1	not used	not used	not used	not used			
Total water consumption Indicator 4.1							
	not used	not used	not used	not used			
Indoor air quality Indicator 4.2							
	not used	not used	not used	not used			
Time outside of thermal comfort range							
Indicator 5.1							
Life cycle tools: scenarios for projected	not used	not used	not used	not uted			
future climatic conditions							
Indicator 6.1	not used	not used	not used	not used			
Life cycle costs Indicator 6.2							
	used	not used	not used	not used			
Value creation and risk factors							
LCA							
Overarching assessment tool: Cradle to	not used	not used	not used	not used			
cradle Life Cycle Assessment (LCA)							

Generate reporting sheets

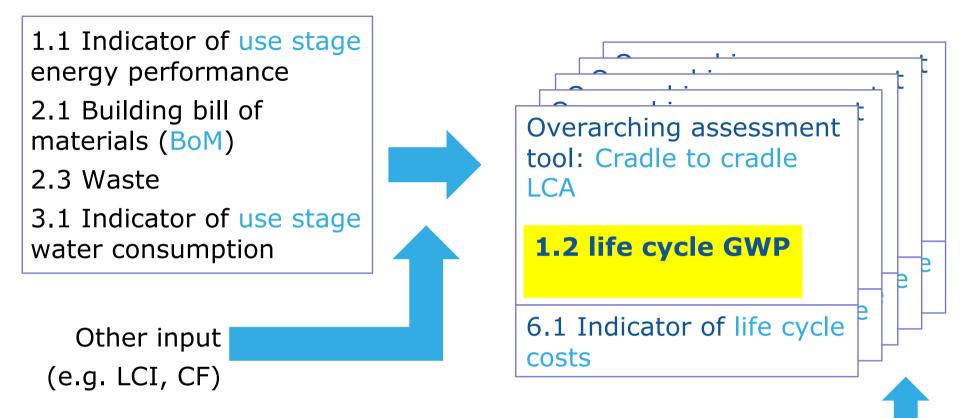
Calculations to be made separately

Basic reporting format

Add scenario	Delete scenario			Globa	al Warming Potential	for each life cycle stage	•			
			Indicator	Unit	Product (A1-3)	Construction process (A4-5)	Use stage (B1-7)	End of life (C1-4)	Benefits and loads beyond the system boundary (D)	
			(1) GWP - fossil	kg CO₂ eq						
		Scenario	(2) GWP - biogenic	kg CO _z eq						
			GWP – GHGs (1+2)	kg CO₂ eq						Additional Info (write directly or
			(3) GWP – land use and land	kg CO₂ eq					Checklist	attach files)
			GWP – overall (1+2+3)	kg CO _z eq					Those in RED are optional for Leve •Objectives, users and audience •Min scope covered	el 1:
								-	-System boundaries and out-off rul -Consistency with energy and water modelling -Donsistency with scenario modelli -Data sources -Software -LCIA methods -Calculation of data quality index -Interpretation -Critical review	

Evaluation scenario/option(s) Project stage Additional info/notes

Part 2: Basic steps in making a life cycle GWP calculation



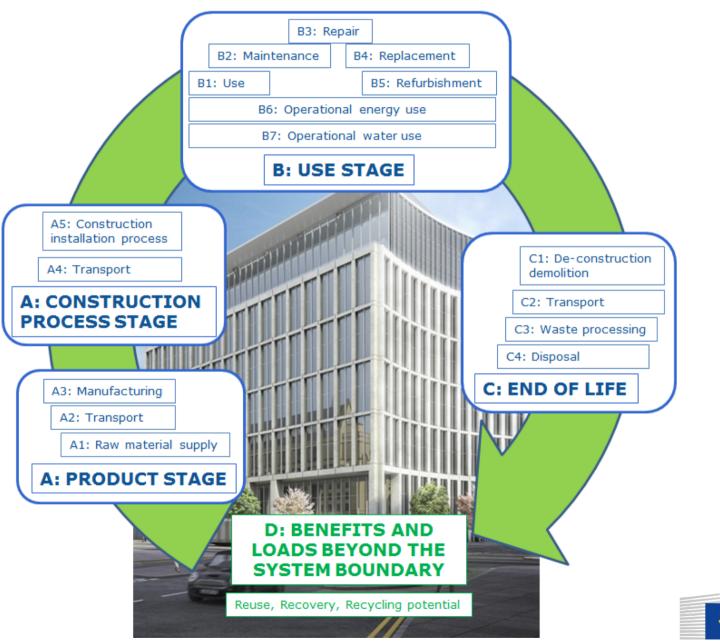
Calculation methodology

- 1. Goal, scope and scenario definition (= building description)
- 2. Life cycle stages modelling, divided into building's modules (e.g. B6)
- 3. Mass and energy balances \rightarrow mass and energy flows incl. direct GHG emissions (e.g. from combustion)
- 4. Life Cycle Inventory (LCI) data \rightarrow Quantify indirect GHG emissions (embodied in materials and energy carriers)
- 5. Interpretation stage: critical analysis of results, of what they mean and not

Linked indicators and life cycle tools

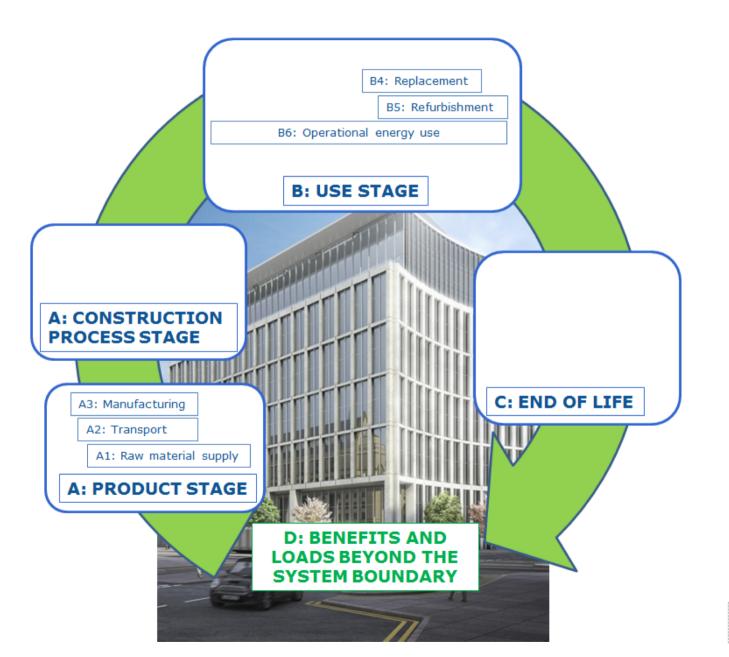
2.2 Life cycle tools which focus on resource efficiency:

- Scenario 1: Building and elemental service life planning
- Scenario 2: Design for adaptability and refurbishment
- Scenario 3: Design for deconstruction, reuse and recyclability

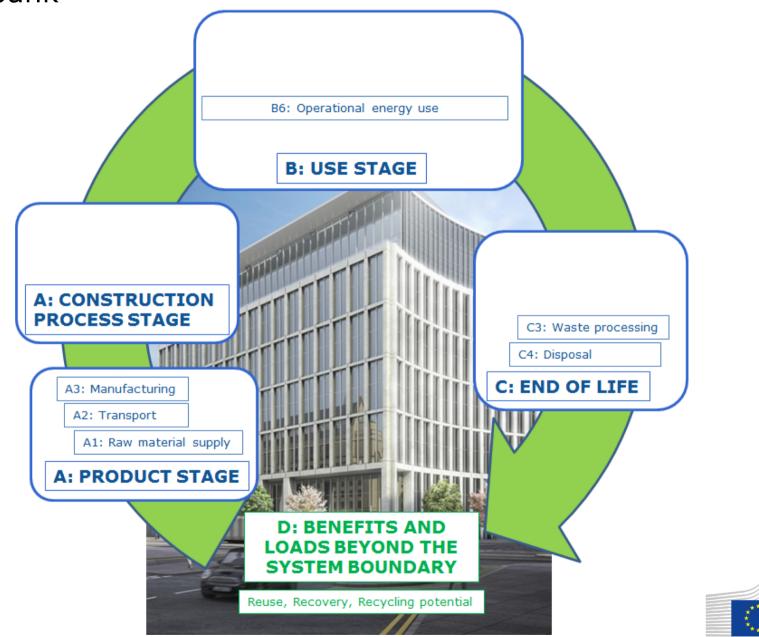

5.1 Life cycle tools: scenarios for projected future climatic conditions

Simplified assessment rules

- Challenging compilation of sufficient life cycle inventory data
- Design professionals may not have the expertise to make meaningful assumptions and choices
- Simplified life cycle modelling possible (Levels 1 and 2):
 - $\checkmark\,$ minimum life cycle boundaries and scope of building elements
 - focus on life stages in which material use and environmental impacts will have taken place upon completion of the building, and will be directly influenced by design decisions
 - ✓ results shall clearly be reported as based on an `incomplete life cycle'
- Assumptions and limitations to be reflected in the interpretation stage



Full Life Cycle



Simplified reporting option 1: 'incomplete life cycle: product stage, calculated energy performance and projected service life'

Simplified reporting option 2: 'incomplete life cycle: product stage, calculated energy performance and the building material bank'

Whole life cycle GWP

 $GWP_{b,life-cycle} = GWP_{b, A1-A3} + GWP_{b,A4} + GWP_{b,A5} + GWP_{b,B1-B5}$ $+ GWP_{b,B6} + GWP_{b,C1-C4} + GWP_{b,D}$

 $GWP_{b,A1-A3}$ $GWP_{b,A4}$ $GWP_{b,A5}$ $GWP_{b,B1-B5}$ $GWP_{b,B6}$ $GWP_{b,C1-C4}$ $GWP_{b,D}$

Building life-cycle GWP (kg_{c02e}/m²)

Building products GWP (kg_{CO2e}/m^2) Building transport GWP (kg_{CO2e}/m^2) Building construction GWP (kg_{CO2e}/m^2) Building embodied use stage GWP (kg_{CO2e}/m^2) Building operational energy use GWP (kg_{CO2e}/m^2) Building end of life GWP (kg_{CO2e}/m^2) Building benefits and loads GWP (kg_{CO2e}/m^2)

	[A1 - A3]	[A4	- A5]		[B1 - B7	7]		[C1 - C4]			[D]	
F	PRODUC stage	T	PRO	RUCTION OCESS age		USE stage		END OF LIFE stage			Benefits and loads beyond the system boundary			
[A1]	[A2]	[A3]	[A4]	[A5]	[B1]	[B2]	[B3]	[B4]	[B5]	[C1]	[C2]	[C3]	[C4]	
Raw material extraction & supply	Transport to manufacturing plant	Manufacturing & fabrication	Transport to project site	Construction & installation process		Waintenance Waintenance				Deconstruction Demolition	Transport to disposal facility	Waste processing for reuse, recovery or recycling	Disposal	Reuse Recovery Recycling potential

cradle to gate

cradle to practical completion (handover)

cradle to grave

cradle to grave including benefits and loads beyond the system boundary

≻

	PRODUCT stage				ucts GWP (kg _{co2e} /m ²) erial characterisation factor
[A1]	[A2]	[A3]		BoQ BIM	EPDs Databases
					Tools
supply	Juantit		Bill of Quantities	Technical Specifications	Composition
extraction &	Transport to manufacturing plant	ing & fabrica	100 m ² of foundation	Strength: 50 MPa	 1 m³/m² of unreinforced concrete with strength of 50 MPa and density of 2370 kg/m³ (of which, cement: 200 kg/m³). 10 kg/m2 of light-grade steel
aw material (Raw material extraction & supply Transport to manufacturing plant Manufacturing & fabrication		10 columns	Strength of each column: 20 MPa	 0.5 m³/column of reinforced concrete with strength of 20 MPa and density of 2420 kg/m³ (of which, cement: 290 kg/m³, steel: 30 kg/m³)
Ra			10 window units	Area of each unit: 3m ² U: 1.5 W/m ² K	 Aluminium, 5 kg/unit Plastic (PA), 0.1 kg/unit Glass, 2.5 kg/unit
			10 doors	Area of each door: 1 m ²	 Hardwood (0.8 kg/dm³), 15.2 kg/unit
				Thickness: 19 mm	

	$\begin{bmatrix} A1 - A3 \end{bmatrix} = GWP_{b,A1-A3} = Building products GWP (kg_{CO2e}/m^2)$ $= Material quantity x Material characterisation$					
[A1]	[A2]	[A3]		BoQ BIM	EPDs Databases	
					Tools	
ly	>		Bill of Materials	without considering the expected lifetime of the building's elements		
Raw material extraction & supply	Transport to manufacturing plant	g & fabrication	Metals	1200 kg	Steel, 1000 kg (foundation) Steel, 150 kg (columns) Aluminium, 50 kg	
ław material ex	Tran to manufac	Manufacturing	Non-metallic mineral materials	248975 kg	Concrete, 237000 kg (foundation) Concrete, 11950 kg (columns) Glass, 25 kg	
			Fossil energy materials	1 kg	Plastic (PA), 1 kg	
			Biomass based materials	152 kg	Hardwood, 152 kg	

Minimum scope of building parts and related building elements

Shell (substructure and superstructure)

- ✓ Foundations (substructure)
- ✓ Load-bearing structural frame
- ✓ Non-load-bearing elements
- ✓ Facades
- Roof
- ✓ Parking facilities
- Core (fittings, furnishings and services)
 - ✓ Fittings and furnishings
 - ✓ In-built lighting system
 - Energy system
 - ✓ Ventilation system
 - ✓ Sanitary systems
 - ✓ Other systems

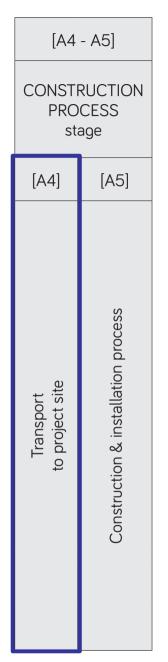
External works

- Utilities
- ✓ Landscaping

Contribution of Bill of Materials to 1.2

- 1. Compile the Bill of Quantities (elements): A BoQ is compiled
- Identify the basic composition of each building element: A breakdown in mass of the main materials that each building element is made up of should be compiled.
- 3. Identify the technical specification of each building element: This technical information will, later, if there is a lack of specific data from manufacturers, enable the selection of representative data from within a generic life cycle inventory database.
- 4. Aggregation by material: The materials should be aggregated to obtain the mass for each type of material, as well as the four material types accounted for by Eurostat:
 - Metal materials
 - Non-metallic mineral materials
 - ✓ Fossil energy materials
 - ✓ Biomass based materials

BOM x Characterization Factors → contribution to indicator 1.2



[A1 - A3] PRODUCT stage			GWP _{b,A1-A3} = Building products GWP (= Material quantity x Material charac boQ					
[A1]	[A2]	[A3]		[М		zebs Database	20	
						Fools		
supply	It	tion	Summary of Environmental Product E	Declaration	Environmental Impacts			
on & io	Transport to manufacturing plant	fabrication	Central Concrete		Impact name	Unit	Impact per m3	Impact per cyd
Raw material extraction &	sport turinę	ð	Mix 340PG9Q1		Total primary energy consumption	MJ	2,491	1,906
al ext	Transport	Manufacturing	San Jose Service Area		Concrete water use (batch)	m3	6.66E-2	5.10E-2
aterià	mar	ufact	EF V2 Gen Use P4000 3" Line	9 50% SCM	Concrete water use (wash)	m3	8.56E-3	6.55E-3
E N	to	Man			Global warming potential	kg CO2-eq	271	207
Ra			Derformance Matrice		Ozone depletion	kg CFC-11-eq	5.40E-6	4.14E-6
			Performance Metrics	īĪ	Acidification	kg SO2-eq	2.26	1.73
			28-day compressive strength	4,000 psi	Eutrophication	kg N-eq	1.31E-1	1.00E-1
			Slump	4.0 in	Photochemical ozone creation	kg 03-eq	46.6	35.7

[A1 - A3]	GWP _{b,A1-A3} = Building	g products GWP (kg _{CO2e}	/m²)
Ρ	RODUC stage	Т	= Material quantity	x Material characterisa	tion factor
[A1]	[A2]	[A3]	BIM	Databa	606
				Dalaba	565
				Tools	
Raw material extraction & supply	Transport to manufacturing plant	Manufacturing & fabrication	Image: Second state of the second s		te type Project Status Ecoinvent 3 - consequential - None Ecoinvent 3 - allocation, defa None Ecoinvent 3 - allocation, recy None Ecoinvent 3 - allocation, defa None Ecoinvent 3 - allocation, defa None Ecoinvent 3 - allocation, recy None Ecoinvent 3 - allocation, recy None Ecoinvent 3 - allocation, recy None Ecoinvent 3 - allocation, defa None Ecoinvent 3 - allocation, recy None Ecoinvent 3 - allocation,
			ter Jeaning ter Ventilation	Concrete, normal {RoW} unreinforced concrete production, with cem m3	Ecoinvent 3 - allocation, defa None

 $GWP_{b,A4} = Building transport GWP (kg_{CO2e}/m^2)$

= Material mass x transport distance x transport characterisation factor

Transportation Mode	Factor	Unit
AirFreight: Short-haul international	2.31277	kg _{CO2e} /tkm
AirFreight: Long-haul international	1.27944	kg _{CO2e} /tkm
RailFreight: Diesel / Electric	0.02601	kg _{CO2e} /tkm
RoadFreight: All rigids - UK average	0.21249	kg _{CO2e} /tkm
RoadFreight: All artics - UK average	0.0855	kg _{CO2e} /tkm
RoadFreight: ALL HGVs - UK average	0.11364	kg _{CO2e} /tkm
RoadFreight: Van <3.5t	0.557671248	kg _{CO2e} /tkm
ShipFreight: Bulk carrier	0.003518	kg _{CO2e} /tkm
ShipFreight: General cargo	0.013155	kg _{CO2e} /tkm

Example UK (DEFRA)


```
[A4 - A5]
CONSTRUCTION
      PROCESS
          stage
                   [A5]
  [A4]
                     Construction & installation process
      to project site
  Transport
```

 $GWP_{b,A5}$ = Building construction GWP (kg_{CO2e}/m²)

- Site monitoring data: Diesel 2.68 kg_{CO2e}/l Electricity 0.46 kg_{CO2e}/kWh
- Construction waste
- Example BRE Targets: 1400kg_{CO2e}/£100k
- Example Environmental Agency tool: 0.01 kg_{CO2e}/£

[B1 - B7]								
	USE stage							
[B1]	[B2]	[B3]	[B4]	[B5]				
Use	Maintenance	Repair	Replacement	Refurbishment				
[B6]	[B6] Operational energy use							
[B7]] Opera	ational	water	use				

$GWP_{b,B1-B5}$ = Building embodied use stage GWP (kg_{CO2e}/m²) 60 years reference

Building part Building elements/components Expected lifespan Roof coverings 30 years Roof Internal partitioning and dry lining 30 years Superstructure Wall finishes: 30/10 years Finishes Render/Paint respectively Floor finishes 30/10 years Raised Access Floor (RAF)/Finish layers respectively **Ceiling finishes** 20/10 years Substrate/Paint respectively FF&E Loose furniture and fittings 10 years Heat source, e.q. boilers, calorifiers 20 years Space heating and air treatment 20 years 20 years Ductwork

Example UK (RICS)

[B1 - B7]							
USE stage							
[B1]	[B2]	[B3]	[B4]	[B5]			
Use	Maintenance	Repair	Replacement	Refurbishment			
[B6] Operational energy use							
[B7]	Opera	ational	water	use			

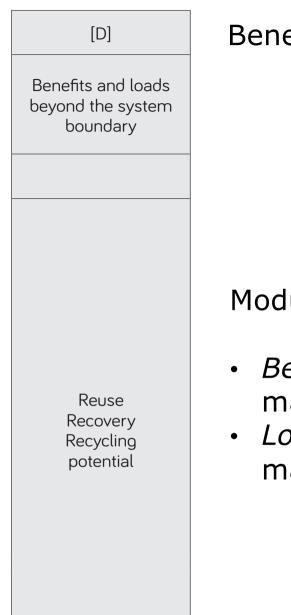
 $GWP_{b,B1-B5} = Building operational energy use GWP (kg_{CO2e}/m^2)$

Indicator 1.1 guidance

- *Design stage*: simplified modelling for building permitting or advanced simulation
- Use stage: monitoring

[C1 - C4] END OF LIFE							
[C1]	sta [C2]	[C3]	[C4]				
Deconstruction Demolition	Transport to disposal facility	Waste processing for reuse, recovery or recycling	Disposal				

•


Building end of life GWP (kg_{CO2e}/m^2)

- Deconstruction = average rates for example 3.4 kg_{CO2e}/m²
- Transport emissions

 mass of waste to be transported x distance to disposal site x transport factor
- Waste processing emissions

 mass of waste x C3 factors from EPDs
- Disposal (landfill or incineration) emissions
 = average rates for example 0.016
 kg_{CO2e}/kg_{waste} from Ökobaudat

Benefits and loads beyond the system boundary

Module D = benefits & loads beyond the system

- Benefits e.g. avoided production of primary material
- Loads e.g. processes needed for recycling materials

Part 3: Options available in terms of CO2 factors and LCI data

Toolkit of guidance and support

Dynamic list:

- Software tools and data for LCA
- + specific tools for GHGs
- <u>http://susproc.jrc.ec.europa.eu/Efficient_Buildings/documents.html</u>

In general:

- Heterogeneous level of experience across Europe
- Specific and verified LCA data (EPDs) is more reliable
- Databases are important resources
- → Link to Member State or pan EU initiatives (work ongoing)

Non-exhaustive list of LCA software tools which can be used for carrying-out the LCA of a building (e.g. for design optimisation or certification)							
Name	Link	Tool					
Athena (Canada)	http://www.athenasmi.org/our-software-data/impact-estimator/	Building-specific					
• •		5 1					
BEES (USA)	http://www.nist.gov/el/economics/BEESSoftware.cfm/	Building-specific					
Bilan Produit ADEME	http://www.ademe.fr/internet/bilan_produit/login.asp	Generic					
COCON (France)	http://eosphere.fr/COCON-comparaison-solutions-constructives-confort.html	Building-specific					
Eco-bat (Switzerland)	http://www.eco- bat.ch/index.php?option=com_content&task=blogcategory&id=14&Itemid=30	Building-specific					
EcoCalculator (Canada)	http://www.athenasmi.org/tools/ecoCalculator/	Building-specific					
EcoEffect (Sweden)	http://www.ecoeffect.se/	Building-specific					
ECO-QUANTUM (The Netherlands)	http://www.ivam.uva.nl/?id=2&L=1	Building-specific					
ECOSOFT (Austria)	http://www.ibo.at/en/ecosoft.htm	Building-specific					
EIME	http://www.codde.fr/page.php?rubrique=20	Generic					
ELODIE (France)	http://www.elodie-cstb.fr/default.aspx	Building-specific					
envest 2 (UK)	http://envestv2.bre.co.uk/	Building-specific					
EQUER (France)	http://www.izuba.fr/logiciel/equer	Building-specific					
GaBi	http://www.gabi-software.com	Generic					
GaBi-Build-IT (Germany)	http://www.pe-international.com/sweden/services-solutions/green- building/building-lca/	Building-specific					
GreenCalc+ (The Netherlands)	http://www.greencalc.com/	Building-specific					
LEGEP (Germany)	http://www.legep-software.de/	Building-specific					
OpenLCA	http://www.openlca.org/index.html	Generic					
SimaPro	http://www.pre-sustainability.com	Generic					
SBS (Germany)	http://www.sbs-onlinetool.com	Building-specific					
ТЕАМ	https://ecobilan.fr	Generic					
Umberto	http://www.umberto.de/en/	Generic					
Available certification schemes							
	ttp://www.breeam.org/						
the labelling of buildings) DGNB (German system for	ttp://www.dgnb.de/dgnb-ev/de/						
the labelling of buildings)	ittp://www.dghb.de/dghb-ev/de/						
	ttp://assohqe.org/hqe/spip.php?rubrique45						
	ttp://www.gbce.es/pagina/certificacion-verde						

Non-exhaustive list of LCA and EPD databases for the construction sec	tor
ACLCA Product Category Rules (USA)	http://lcacenter.org/product-category-rule.aspx
ASTM EPD (USA) (Verified ISO 21930)	https://www.astm.org/CERTIFICATION/EpdAndPCRs.html
Australasian EPD	http://www.astmorg/celerinicarion/epuandicks.html
Base carbone ADEME (France)	http://www.basecarbone.fr/
Bau EPD (Austria)	http://www.basecarbone.n/
Bauteil Katalog (Swiss)	http://www.bauteilkatalog.ch/ch/fr/catalogueconstruction.asp
BRE Environmental Profiles (UK) (ISO 21930)ISO	https://www.bre.co.uk/Environmental_Profiles.html
BRE Verified EN 15804 EPD (UK)	http://www.bre.co.uk/greenguide/page.jsp?id=558
CSA EPD (Canada) (Verified ISO 21930)	http://www.csaregistries.ca/epd/about_epd_pcrs_e.cfm
DAP construcción (Spain)	http://www.csostenible.net/index.php/es/sistema_dapc
DAP Habitat (Portugal)	http://daphabitat.pt/?page_id=461
DIOGEN (France)	www.diogen.fr
Ecoinvent	http://www.ecoinvent.org/database/database.html
ELCD	http://eplca.jrc.ec.europa.eu/ELCD3/index.xhtml?stock=default
EPD Danmark (Denmark)	http://www.epddanmark.dk/site/index.html
EPD Italy	http://www.epditaly.it/
EPD Latin America	https://www.epd-americalatina.com/
EPD Norge (Norway)	http://www.epd-norge.no/category.php?categoryID=386
EPD Turkey	http://www.epdturkey.org/
ESUCO (Europe)	http://www.dgnb-international.com
European Aluminium EPD Programme	http://european-aluminium.eu/resource-hub/building-products-epd-programme/
FDES (FR) Unverified EPD to EN 15804	http://www.fdes-eco-construction.com/ensavoirplus/fdes/quest-ce-quune-fdes
Gabi Database	
GEDNet Global Environmental Declarations Network (Global)	http://gednet.org/
Global EPD (Spain)	https://www.en.aenor.es/aenor/certificacion/mambiente/globalepd.asp
Green Book Live: Environmental Profiles (UK)	http://www.greenbooklive.com/search/scheme.jsp?id=9
IBO LCA database (Austria)	http://www.ibo.at/en/index.htm
IBU (Germany)	http://bau-umwelt.de/hp474/Umwelt-Produktdeklarationen-EPD.htm
IERE Earthsure EPD (USA) (Verified (ISO 14025)	https://iere.org/programs/earthsure/
INIES FDES (France)	http://www.inies.fr/IniesConsultation.aspx
International EPD (Sweden)	http://www.environdec.com/Epd-Search/?Category=6196
ITB-EPD (Poland)	
Leitfaden database (Luxembourg)	http://www.crtib.lu/de/leitfaden-fuer-nachhaltiges-bauen
Minnesota Building Materials Database (USA)	http://www.buildingmaterials.umn.edu/materials.html
MRPI (NL) (Verified EN 15804 not publicly available)	http://www.mrpi.nl/
MRPI (The Netherlands)	http://www.mrpi.nl/Deelnemers/Certificaten/tabid/71/ctl/CustomersDocumentDetails/mi d/399/VendorID/1/language/en-US/Default.aspx
NSF EPD (USA) (Verified ISO 14025)	http://www.nsf.org/newsroom/nsf-international-verifies-first-environmental-product-
	declaration-for-wate
Ökobau.dat (Germany)	http://oekobaudat.de/datenbank/browser-oekobaudat.html
PEP-EcoPassport (Building related) (Verified ISO 14025)	http://www.pep-ecopassport.org/
PEP Ecopasseport (France)	http://www.pep-ecopassport.org/
PlasticsEurope (Europe)	http://www.plasticseurope.org/plastics-sustainability/life-cycle-thinking/epd- reports.aspx
SCS EPD (USA) (Verified ISO 14025)	
SCS EPD (USA) (Verified ISO 21930)	
SCS Global Services (USA)	https://www.scsglobalservices.com/
The Athena Institute database (Canada)	http://www.athenasmi.org/our-software-data/overview/
UL Environment USA	http://industries.ul.com/environment
WorldSteel (Global)	http://www.worldsteel.org/?action=programs&id=62
ZAG EPD (Slovenia)	http://www.zag.si/en/

Calculation tools and data

Tools:

- Freely available (e.g. OpenLCA) vs. commercial price (e.g. Carbon Footprint Ltd, CarbonScopeData[™], GaBi, SimaPro) software tools
- **Simplified** (e.g. excel-based, IT interface) vs. more **complex** tools (*e.g. GaBI, OpenLCA, Simapro*)
- Generic (e.g. GaBi, SimaPro) vs. building-specific software tools (e.g. BEES, ATHENA, ELODIE and SB Tool)
- Full LCA vs carbon-specific tools (e.g. Carbon Footprint Ltd, CarbonScopeData[™])

Data:

- Freely available (e.g. ELCD) vs. commercial price (e.g. Bauteil katalog, Ecoinvent, GaBi) database
- Specific (e.g. Bauteil katalog, EPDs) or generic (e.g. Ecoinvent, GaBi) data for construction products and materials

Where to find factors?

Environmental Product Declarations (EPDs)

More accurate than generic LCA data

Databases

Used when primary data related to product not available

LCA software

Used by LCA experts or LCA beginners when LCA data of product or similar product is not available and more precise/accurate data is required

	Building- specific	Cost	User-friendly	Robustness
BAUTEILKATALOG.CH	Specific	Partially costly	User-friendly but not in English	Comprehensive
econvent	Generic	Commercial	Requires LCIA understanding	Third party verified
ÖKOBAUDAT PORTAL NACHHALTIGES BAUEN	Specific	Open- source	User-friendly but not in English	Comprehensive
GaBi Software Product SUSTAINABILITY	Generic	Commercial	Requires LCA understanding	Black box
INVENTORY OF CARBON & ENERGY (ICE)	Specific	Open- source	User-friendly	Comprehensive No update since 2011

N.B.: Examples, not recommendations, see dynamic list

INVENTORY OF CARBON & ENERGY (ICE)

INVENTORY OF CARBON & ENERGY (ICE) SUMMARY

Materials	Embod	ied Energy & Carbon Coef	Comments	
	EE - MJ/kg	EC - kgCO2/kg	EC - kgCO2e/kg	EE = Embodied Energy, EC = Embodied Carbon

Concrete							-			
General		0.75			0.100			0.107		It is strongly recommended to avoid selecting a 'general' value for concrete. Selecting data for a specific concrete type (often a ready mix concrete) will give greater accuracy, please see material profile. Assumed cement content 12% by mass.
16/20 Mpa	0.70				0.093			0.100		
20/25 MPa		0.74			0.100			0.107		
25/30 MPa		0.78		0.106		0.113			Using UK weighted average cement (more representative of	
28/35 MPa	0.82		0.112		0.120			'typical' concrete mixtures).		
32/40 MPa	0.88		0.123		0.132					
40/50 MPa		1.00			0.141			0.151		
% Cement Replacement - Fly Ash	0%	15%	30%	0%	15%	30%	0%	15%	30%	Note 0% is a concrete using a CEM I cement (not typical)
GEN 0 (6/8 MPa)	0.55	0.52	0.47	0.071	0.065	0.057	0.076	0.069	0.061	Compressive strength designation C6/8 Mpa. 28 day compressive strength under British cube method of 8 MPa, under European cylinder method 6 MPa. Possible uses: Kerb bedding and backing. Data is only cradle to factory gate but beyond this the average delivery distance of ready mix concrete is 8.3 km by road (see Ref. 244).

ÖKOBAUDAT -> 1. Mineral building products -> 1.4 Mortar and Concrete

1.4.01 Ready mixed concrete

1.4.02 Mortar (masonry)

1.4.03 Screed dry mortar

1.4.04 Renders and plasters

1.4.05 Adhesive and adhesive mortar

Total number of datasets: 1218 as of 05.11.2018

ÖKOBAUDAT -> 1. Mineral building products -> 1.4 Mortar and Concrete

1.4.01 Ready mixed concrete	
1.4.02 Mortar (masonry)	
1.4.03 Screed dry mortar	
1.4.04 Renders and plasters	
1.4.05 Adhesive and adhesive mortar	
Total number of datasets: 1218 as of 05.11.2018	
ÖKOBAUDAT -> 1. Mineralische Baustoffe -> 1.4 Mörtel und Beton -> 1.4.01 Beton	
Beton der Druckfestigkeitsklasse C 20/25	HTML - XML
Beton der Druckfestigkeitsklasse C 25/30	HTML - XML
Beton der Druckfestigkeitsklasse C 30/37	HTML - XML
Beton der Druckfestigkeitsklasse C 35/45	HTML - XML
Beton der Druckfestigkeitsklasse C 45/55	HTML - XML
Beton der Druckfestigkeitsklasse C 50/60	HTML - XML

ÖKOBAUDAT -> 1. Mineral building products -> 1.4 Mortar and Concrete

HTML - XML
HTML - XML

Parameter zur Beschreibung der Umweltwirkungen

Indikator \$	Einheit \$	Herstellun A1-A3	Transport A4	Einbau A5	Nutzung B1	Instandha B2	Reparatur B3	Ersatz B4	Umbau/Er B5	Abbruch C1	Transport C2	Abfallbeha C3	Recycling D
Globales Erwärmungs (GWP)	<u>kg CO_(2)-</u> <u>Ăq.</u>	334.7	14.8	1.35	0	0	0	0	0	3.02	0.47	1.38	-23.08
Abbau Potential der stratosphäri: Ozonschich (ODP)		9.56E-7	7.94E-10	3.06E-9	0	0	0	0	0	1.63E-14	2.65E-11	7.45E-11	-9.57E-8

Search in Activity Name, Reference Product Names and Synonyms 💷

concrete

System Model

Undefined

Allocation, cut-off by classification

This system model subdivides multi-product activities by allocation, based on a physical properties, economic, mass or other properties. By-products of waste treatment processes are cut-off, as are all by-products classified as recyclable. Markets in this model include all activities in proportion to their current production volume.

- Allocation at the point of substitution
- Substitution, consequential, long-term

Search in Activity Name, Reference Product Names and Synonyms 💷

concrete

System Model

Undefined

Allocation, cut-off by classification

This system model subdivides multi-product activities by allocation, based on a physical properties, economic, mass or other properties. By-products of waste treatment processes are cut-off, as are all by-products classified as recyclable. Markets in this model include all activities in proportion to their current production volume.

Allocation at the point of substitution

Substitution, consequential, long-term

14		concrete production 35MPa, RNA only	concrete, 35MPa [m3]	RoW	01.01.2006 - 31.12.2016	ready-mix concrete//ready mixed concrete	PDF UPR LCI LCIA
15		concrete production 50MPa, RNA only	concrete, 50MPa [m3]	CA-QC	01.01.2006 - 31.12.2016	ready-mix concrete//ready mixed concrete	PDF UPR LCI LCIA
16	<	concrete production 50MPa, RNA only	concrete, 50MPa [m3]	RoW	01.01.2006 - 31.12.2016	ready-mix concrete//ready mixed concrete	PDF UPR LCI <u>LCIA</u>

Unit Drocore Eveloped

Unit Process Exchanges				
Name	Amount	Unit	Uncertainty	SD
Reference Products				
+ concrete, 50MPa	1	m3		
By-product/Waste				
To Environment				
From Environment				
From Technosphere				
+ ReCiPe Midpoint (E) w/o LT				
+ <u>ReCiPe Midpoint (H)</u>				
+ ReCiPe Midpoint (H) w/o LT				
+ ReCiPe Midpoint (I)				
+ selected LCI results				
+ selected LCI results, additional				
+ TRACI				

Unit Deserve Eachers

Unit Process Exchanges				
Name	Amount	Unit	Uncertainty	SD
Reference Products				
+ concrete, 50MPa	1	m3		
By-product/Waste				
To Environment				
From Environment				
From Technosphere				
+ ReCiPe Midpoint (E) w/o LT				
– ReCiPe Midpoint (H)				
+ agricultural land occupation				
+ <u>climate change</u>				
+ fossil depletion				
+ freshwater ecotoxicity				
+ freshwater eutrophication				
+ human toxicity				

Unit Drocore Eveloped

Unit Process Exchanges			
Name	Amount	Unit	Uncertainty SD
Reference Products			
+ concrete, 50MPa	1	m3	
By-product/Waste			
To Environment			
From Environment			
From Technosphere			
+ ReCiPe Midpoint (E) w/o LT			
– ReCiPe Midpoint (H)			
+ agricultural land occupation			
– <u>climate change</u>			
GWP100	343.86		kg CO2-Eq
+ fossil depletion			
+ freshwater ecotoxicity			
+ freshwater eutrophication			
+ human toxicity			

European Commission

LCA software

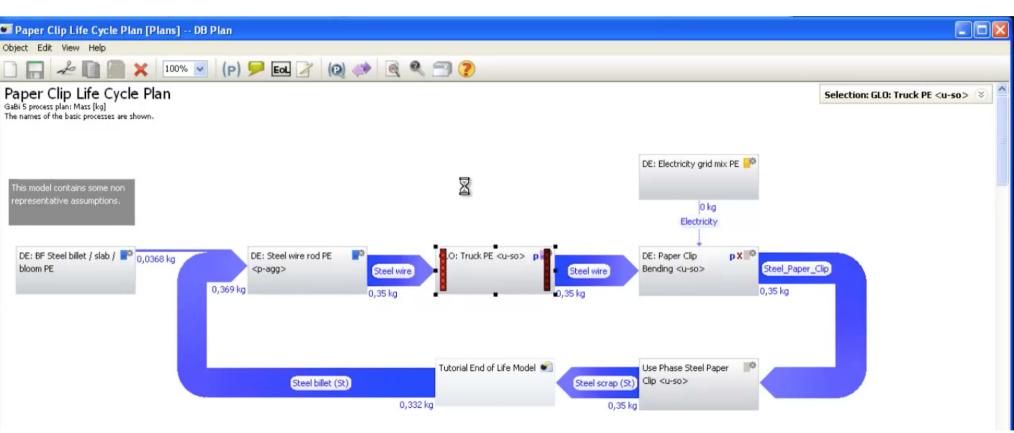
		Building- specific	Cost	User- friendly	Robustness
	GaBi Software PRODUCT SUSTAINABILITY	Generic	Commercial	Complex full LCA	Black box
C	penica	Generic	Open- source	Complex full LCA	Comprehensive
5	Sima Pro	Generic	Commercial	Complex full LCA	Referencing sources
	Athena Impact Estimator for Buildings	Building- specific	Open- source	Simple IT interface	Black box
6	Clodie	Building- specific	Commercial	Complex full LCA	Referencing sources
One Clie		Building- specific	Commercial	LCA made easy	Using regional databases

N.B.: Examples, not recommendations, see dynamic list

Software

	A	В	С	D	E	F	G	Н	1	J
				TOTAL IM		Primary Energy (MJ)	GWP (tonnes)	Weighted Resource Use (tonnes)	Air Pollution Index	H2O Pollution Index
1				BUILDING C		TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
2					INS & BEAMS	0	0		0	
3		EcoCalculat	or		ATE FLOORS	0	0		0	
4			01	EXTE	RIOR WALLS	0	0		0	
5		for assemblies		TA ITT	WINDOWS	0	0		0	
6				INTE	RIOR WALLS ROOF	0	0			
8				WHO	E BUILDING	0	0		0	
	C F	XTERIOR WALLS		#100		0	0	0	0	0.00
9										
10	ATH	IENA ASSEMBLY EVALUAT	τον το	OL v2.3	3—Toro	nto Lov	v-Rise I	Building		
11		YELLOW CELLS BELOW, ENTER THE AREA (in						-		
						Primary	EDTITO	Weighted	Air Pollution	H2O Pollution
			Assembly R-		Percentage of	Energy	GWP	Resource Use	Index	Index
12			value	m ²	total	per m ² (MJ)	per m ² (kg)	per m ² (kg)	per m ²	per m ²
13	Averag	le:				1421.11	88.76	319.71	18.36	7.43
14	8" CON	ICRETE BLOCK								
		Concrete block, brick cladding								
15	1	rigid insulation, vapor barrier	21.80	0		2254.83	113.76	256.98	27.99	0.0198
	2	Concrete block, steel cladding,								
16	Z	rigid insulation, vapor barrier	21.61	0		2519.28	208.41	190.63	37.45	47.3227
	3	Concrete block, stucco cladding								
17	3	rigid insulation, vapor barrier	21.11	0		1530.64	88.82	213.63	16.79	0.0310
18	4	Concrete Block, EIFS, vapor barrier	16.51	0		1227.71	72.38	136.73	14.51	0.0131
	5	Concrete Block, precast cladding, rigid								
19		insulation, vapor barrier	21.00	0		1464.18	93.18	301.72	16.58	0.0557
		Concrete block, brick cladding								
	6	rigid insulation, vapor barrier								
20		gypsum board, latex paint	22.36	0		2394.08	118.17	275.66	29.89	0.0198
	7	Concrete block, steel cladding								
21		rigid insulation, vapor barrier gypsum board, latex paint	22.17	0		2658.52	212.82	209.30	39.35	47.3227
21		Concrete block, stucco cladding	22.1/	U		2038.32	212.82	209.30	39.30	47.3227
	8	rigid insulation, vapor barrier								
22	0	gypsum board, latex paint	21.67	0		1669.89	93.23	232.30	18.69	0.0310
22		Concrete block, EIFS, vapor barrier, gypsum	21.07	0		1009.09	55.25	232.30	10.09	0.0310
23	9	board, latex paint	17.07	0		1366.95	76.79	155.41	16.41	0.0131
20		Concrete block, precast cladding, rigid	17.07	0		1000.90	70.79	100,41	10.41	0.0131
			10 / INITES	EDIATE EL OC			WINDOWS	IN ITERIOR		
14 4	P PI	WELCOME & HOW-TO / COLUMINS AND BEAN	NO A INTERM	EDIATE FLOC	KS YEXIERI	UK WALLS	WINDOWS /	INTERIOR W	ALLS (KUU	-5/

Software



\$		Produkt auswählen		×
Ceramics	^	Name	Einhe ^	Augusthian
Chemicals		Concrete, 20MPa {CA-QC} concrete production 20MPa, RNA only APOS, U	m3	Auswählen
Construction		Concrete, 20MPa {CA-QC} concrete production 20MPa, RNA only Conseq, S	m3	Neu
Binders		Concrete, 20MPa {CA-QC} concrete production 20MPa, RNA only Conseq, U	m3	Ansicht
Bitumen		Concrete, 20MPa {CA-QC} concrete production 20MPa, RNA only Cut-off, S	m3	Ansiene
Bricks		Concrete, 20MPa {CA-QC} concrete production 20MPa, RNA only Cut-off, U	m3	Suchen
- Capital goods		Concrete, 20MPa {RoW} concrete production 20MPa, RNA only APOS, S	m3	Abbrechen
Cladding		Concrete, 20MPa {RoW} concrete production 20MPa, RNA only APOS, U	m3	
E Concrete		Concrete, 20MPa {RoW} concrete production 20MPa, RNA only Conseq, S	m3	Als Liste
- Infrastructure		Concrete, 20MPa {RoW} concrete production 20MPa, RNA only Conseq, U	m3	/einen
Market	≡	Concrete, 20MPa {RoW} concrete production 20MPa, RNA only Cut-off, S	m3	
□ Transformation		Concrete, 20MPa {RoW} concrete production 20MPa, RNA only Cut-off, U	m3	
Infrastructure		Concrete, 25MPa {CA-QC} concrete production 25MPa, RNA only APOS, S	m3	
Coverings		Concrete, 25MPa {CA-QC} concrete production 25MPa, RNA only APOS, U	m3	
E Doors		Concrete, 25MPa {CA-QC} concrete production 25MPa, RNA only Conseq, S	m3	
Glass		Concrete, 25MPa {CA-QC} concrete production 25MPa, RNA only Conseq, U	m3	
		Concrete, 25MPa {CA-QC} concrete production 25MPa, RNA only Cut-off, S	m3	
Gypsum		Concrete, 25MPa {CA-QC} concrete production 25MPa, RNA only Cut-off, U	m3	
Insulation		Concrete, 25MPa {RoW} concrete production 25MPa, RNA only APOS, S	m3	
Other		Concrete, 25MPa {RoW} concrete production 25MPa, RNA only APOS, U	m3	
Others		Concrete, 25MPa {RoW} concrete production 25MPa, RNA only Conseq, S	m3	
⊕ Andere		Concrete, 25MPa {RoW} concrete production 25MPa, RNA only Conseq, U	m3	
Paints		Concrete 25MPa /RoWU concrete production 25MPa_RNA only LCut-off_S	m2 *	
B Sealing		This dataset represents the production of Quebec 25 MPa ready-mix concrete. Density: 2'432 kg/m ³ . Ingred	lients A	
Ventilation		(for 1 m ³): Cement 279 kg, Water 166 kg, Gravel 1010 kg, Sand 955 kg, Fly ash 21 kg, Water reducing admix		
Windows		kg.	ule 0,9	
Electricity by fuel				
Electronics		25 MPa concrete is intended for interior slabs not exposed to freeze-thaw, including residential, commercia	and	
B Fishery		industrial uses (following the Canadian CSA specs - http://www.rmcao.org/sites/default/files/CSA%20Quick		
. Food			~	
E Fuels	~	Gefiltert O und O oder Entfernen 300		
103307 Einträge 1 Eintra	g au	sqewählt		1.

Finland

Environmental Classification PromisE 2015

- Material consumption: total use of raw materials
- Recycling rate of building materials
- Service life design
- Level of adaptability
- Waste management

- Green Building Council in Finland
- OneClickLCA (LCA software developed in Finland)
- RTS EPD (Finland) EN 15804 verified
- EPD Norge (Norway) EN 15804 verified
- International EPD and IVL Swedish
 Environmental Research Institute (Sweden)

Spain

VERDE NE 2015

- Service-life optimization
- Use of renewable energy for construction materials
- Renewable energy for materials transportation
- Planning of a selective demolition strategy
- Construction waste management
- Distinction between construction material impacts and energy consumption
- Space efficiency
- Development an implementation of a maintenance plan
- Construction costs

- DAP construcción
- SOFIAS (Institute of Construction Torroja)
- BEDEC, CYPE for VERDE evaluations
- TCQ, CYPE and OneClickLCA is used

Italy

Protocollo Itaca

- Reuse of existing structures
- Recycled/recovered materials
- Renewable materials
- Local materials
- Recyclable or demountable materials
- Certified materials

- EPD Italy EN 15804 verified
- If EPD not available, EcoInvent, Gabi, Ökobaudat, INIES used
- Little data on end-of-life

Poland

LEED, BREEAM, DGNB, HQE

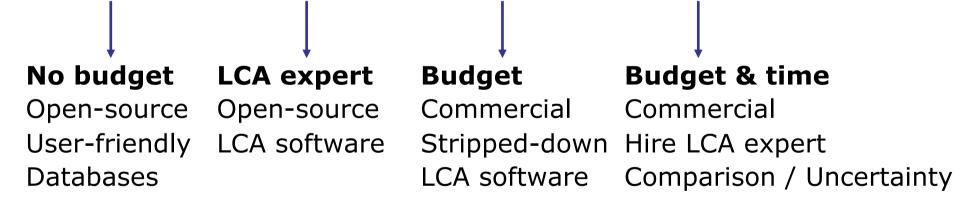
 Poland uses American, British, German, and French certification systems

- Polish Building Research Institute (ITB) provides an EPD database of construction products EN 15804 certified
- No electronic, user-friendly version
- Waste regulation and construction code, data defined by producer

Slovenia

Pilot project Level(S)

• Knauf Insulation Experience Centre


- ZAG EPD EN 15804 verified
- If EPD not available, EcoInvent, Gabi, Ökobaudat used
- Little data on end-of-life

Steps for Member States

What do I do now ?

- National Green Building Council or National provider
- If material EPD is available: use EPD (geographical reference)
- Generic databases & LCA software

Part 4: More advanced options for modelling life cycle GWP

Advanced assessment rules

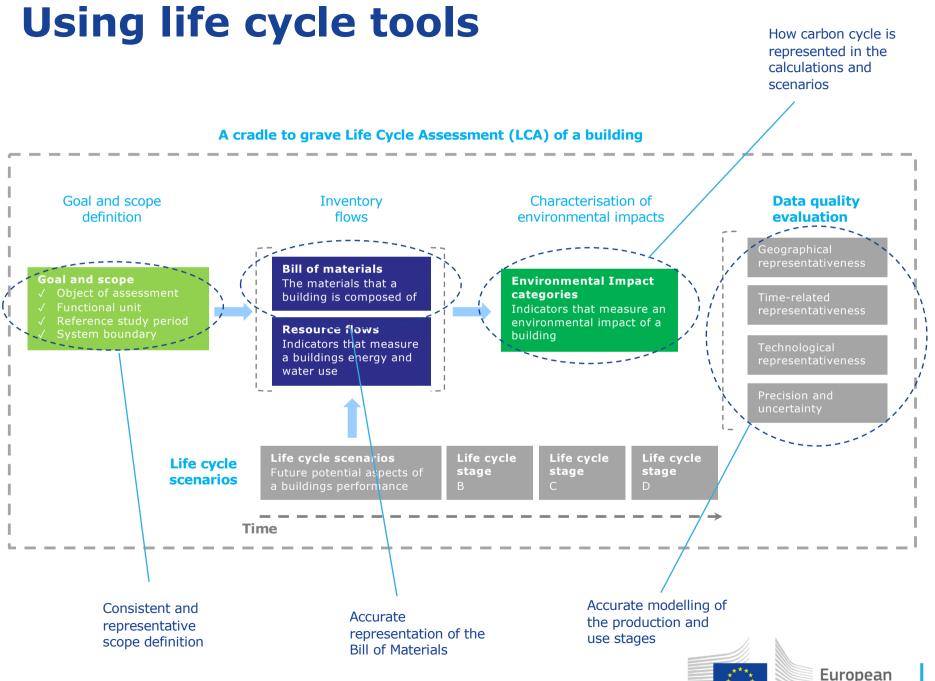
- Mainly an issue for performance reporting in the public domain (Level 2), as well as for design optimization (Level 3)
- More comprehensive assessment
- Methodological choices:
 - Reference modules
 - Building elements and cut-off rules for the system boundary definitions
- Definition of scenarios
- o Data quality index >2
 - Technological/Geographical/Time-related representativeness of data
 - Precision/uncertainty
 - Rating for hot-spots
- **Critical review** + Statement on limitations on assessment

Emissions characterisation factors

Substance	Compartment	GWP 100
Carbon dioxide (fossil)	Air emission	1
Carbon dioxide (biogenic, non-renewable)	Air emission	1
Carbon dioxide (biogenic)	Resource from air	0
Carbon dioxide (biogenic)	Air emission	0
Carbon monoxide (fossil)	Air emission	1.57
Carbon monoxide (biogenic)	Air emission	0
Methane (fossil)	Air emission	25
Methane (biogenic)	Air emission	22.25
Carbon dioxide (land use change)	Resource from air	-1
Carbon dioxide (land use change)	Air emission	1

Specific carbon cycle related issues:

- 'Biomass carbon neutrality' approach
- Credits from 'temporary carbon storage' are to be excluded, emissions as emitted `now' (no discount factor)
- Non'-regenerative use of biomass = fossil
- Net emission in case of carbon emissions of GHGs different from CO2 (based on stochiometry)
- Land use (PAS 2050:2011/2012)


System boundaries and cut off rules

- > 95% of BOM (in terms of mass and GWP), no exclusion of material flows >1%
- > 95% of material/energy flows, no exclusion of flows >1%
- EPDs compliant with EN 15804

Module D

- Benefits (e.g. avoided production of primary material) and loads (e.g. processes needed for recycling materials) beyond the system
- Avoid double counting
- If reuse/recycling of secondary material is reported in A1-A3, not to reconsider it in D
- e.g. if 100 kg of material is to be recycled that contains 30% of secondary materials, then only 70 kg have to be considered

Commission

67

Assessment of alternative scenarios

Life cycle tools 2.2:

- Building / elemental service life planning
- Design for adaptability and refurbishment / for deconstruction, reuse and recycling
- Offices: flexibility within the office market including change of use
 - Residential: changing family/personal circumstances, change of use

Life cycle tool 5.1:

Scenarios for future climate conditions in 2030/2050

Design for adaptability and refurbishment

To ensure consistency specific rules shall be followed:

- Reference assumptions: Client defined intended service life.
- Scenario definition: Property market expert input
- GWP modelling of the design option(s): The implications of adaptability measures for life cycle stage B5
- Changes of use: to reflect the new use as a second service life period.

Design for deconstruction, reuse and recycling

To ensure consistency specific rules shall be followed:

- Reference assumptions: to reflect as accurately as possible existing local practices.
- Scenario definition: demolition contractor or waste management specialist input
- GWP modelling of the design option(s): The implications of deconstruction measures for life cycle stage C1-4/D

Indicator 6.2: Valuation influence and reliability rating of reported results

Specifically directed at investors and valuers, but may be used by all building professionals.

- 1. Potential positive influence on value and risk management
 - Increased revenues: market recognition and lower void rates
 - Reduced costs: operational, maintenance, repair and/or replacement
 - Reduced risk: future increases in overheads or loss of income
- 1. Transparency in understanding the reliability of results
 - ✓ Technical basis for the performance assessment
 - ✓ Technical capability of performance assessors
 - ✓ Independent verification of the assessment

Reliability rating of the assessment Data quality Evaluation

Data:

- Foreground (e.g. the consumption of electricity during the use stage) vs. background (e.g. the production and supply of grid electricity) processes
- Primary (site-specific and directly measured) vs. secondary data
- Variable representativeness and accuracy
- Particularly important for Levels 2 and 3

PEF-inspired evaluation matrix

- Technology, Geography, Time, Uncertainty
- Main contributions to total impacts (hot-spots)
- DQI = ((TeR+GR+TiR)/3+U)/2
- DQI overall = Σi (DQI hot-spot,i x Contribution hot-spot,i) / Σi (Contribution hot-spot,i)

Rating aspect	Brief description of	Rating score			
	each aspect	0	1	2	3
Technological representativeness	Degree to which the dataset reflects the true population of interest regarding technology (e.g. the technological characteristics, including operating conditions)	No evaluation made	The data used does not reflect satisfactorily the technical characteristics of the system (e.g. Portland Cement, without other specifications)	partially the technical characteristics of the system (e.g. Portland Cement type II, without further specifications)	The data used reflects the technical characteristics of the system (e.g. Portland Cement type II B-M)
<i>Geographical</i> <i>representativeness</i>	Degree to which the dataset reflects the true population of interest regarding geography (e.g. the given location/site, region, country, market, continent)	No evaluation made	The data used refer to a totally different geographic context (e.g. Sweden instead of Spain)	The data used refers to a similar geographic context (e.g. Italy instead of Spain)	The data used refers to the specific geographic context (e.g. Spain)
<i>Time-related representativeness</i>	Degree to which the dataset reflects the specific conditions of the system being considered regarding the time/age of the data (e.g. the given year compared to the reference year of the analysis)	No evaluation made	There are more than 6 years between the validity of the data used and the reference year to which the data applies.	There are between 2 and 4 years between the validity of the data used and the reference year to which the data applies.	There are less than 2 years between the validity of the data used and the reference year to which the data applies.
Uncertainty	Qualitative expert judgment or relative standard deviation expressed as a percentage.	No evaluation made	Modelled/similar data is used. Accuracy and precision of the data has been estimated qualitatively (e.g. by expert judgment of suppliers and process operators)	and precise with the	Site specific and validated data is used which is considered to be satisfactorily accurate and precise (e.g. window system for which a verified EPD is available) The allocation hierarchy has been respected.

Data quality result is complemented by:

\checkmark Rating of professional capability

Rating aspect	Rating score			
	0	1	2	3
Technical	No formal	Formal training	Formal training	Formal training
capability of the	training and	or some applied	and some	and significant
personnel	limited	experience in	applied	applied
carrying out the	experience in	using the	experience in	experience in
assessment	using the	calculation	using the	using the
	calculation	method	calculation	calculation
	method		method	method

\checkmark Rating of independent verification

Rating aspect	Rating score			
	0	1	2	3
Independent verification of the assessment	<i>Self-declaration of the performance assessment results</i>	<i>Peer review of the input data and calculation steps</i>	<i>Third party auditing and verification of the calculation steps</i>	Third party auditing and verification of the process data, life cycle inventory data and calculation steps

Reliability ratings	for each performan	ce assessment	
Indicator or scenario	1. Technical reliability rating	2. Professional capabilities rating	3. Independent verification rating
Indicator 1.1 Use stage energy performance: - 1.1.1 Primary energy demand - 1.1.2 Delivered energy demand	0.0	0.0	0.0
Indicator 1.2 Life cycle Global Warming Potential	1.0	2.0	3.0
Tool 2.1 Life cycle tools: Building bill of materials			
Tool 2.2 - Scenario 1 Building and elemental service life planning			

Rating key
Rating aspect not addressed
Low
Medium
High

Discussion and questions can continue in the CIRCABC Forum...

	Level(s) Test Phase Forum	Information	C Library	8 Members	않 Agenda	Forums	⊘} Adn
HANGE YOUR VIEWS H OTHER MEMBERS							
FORUM STRUCTURE		ups → Indicato	1.2 Life cy	cle Global War	rming Potenti	ial (GWP)	
	TOPICS						
Newsgroups Building description Indicator 1.1 Use stage energy consumption <u>Indicator 1.2 Life cycle Global Warming Potential (GWP)</u> Indicator 2.3 Construction and demolition waste and materials	Webina Edit De	6-11-18 Gettin	g started				
Indicator 1.1 Use stage energy consumption Indicator 1.2 Life cycle Global Warming Potential (GWP)	Webina Edit De		g started				

More information

Download the Level(s) Beta v1.0 documentation

http://susproc.jrc.ec.europa.eu/Efficient_Buildings/documents.html

Helpdesk for technical queries jrc-b5-levels@ec.europa.eu

